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1 Ponderosa Computing Linear Algebra Excel Add-ins 

In spite of the apparent similarities between Microsoft Excel spreadsheet arrays and the matrix 

and vector elements of linear algebra, Microsoft Excel provides very little direct support of linear 

algebra functions and operations. The few Excel functions that do support linear algebra 

functions and operations are: 

Array addition, subtraction, scalar multiplication +, -, * 

Inner product SUMPRODUCT 

Array transpose TRANSPOSE 

Matrix multiplication MMULT 

Matrix determinant MDETERM 

Matrix inverse MINVERSE 

Even this support is suspect. For example, it is not recommended to solve square systems of 

linear equations using matrix inversion and multiplication. It is more efficient and accurate to 

factor and solve systems of linear equations using triangularization methods. Nor is it 

recommended to solve linear least-square (regression) problems by solving corresponding 

normal equations. Instead, an orthogonal factorization method or singular value decomposition 

should be used for greater numerical stability. 

LAPACK [1] is a freely-available, peer-reviewed computational linear algebra software package 

that provides routines for solving systems of simultaneous linear equations, computing least-

squares solutions of linear systems of equations, and computing eigenvalue and singular value 

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur, 

generalized Schur) are also provided, as are related computations such as estimating condition 

numbers. 

The purpose of the Ponderosa Computing Linear Algebra Excel Add-ins are to provide Excel 

linear algebra computations as scalar and array worksheet functions augmenting or replacing 

those provided as built-in Excel functions. These Add-ins: 

• Use peer-reviewed and publicly documented LAPACK linear algebra algorithms. 

• Use the CLAPACK implementation [3] of the LAPACK software package [2]. 

• Track latest changes made in the LAPACK distribution addressing the latest bug reports 

and feature requests. 
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The Ponderosa Computing Linear Algebra Excel Add-ins support Microsoft Windows 7, 8, and 

10. There are two Add-ins: 

• PcLinAlgXLL_32.xll supports 32-bit Excel 2007 and later. 

• PcLinAlgXLL_64.xll supports 64-bit Excel 2010 and later. 

Each has a separate installer package available for download from Ponderosa Computing. 

This document describes version 1.3 of the Ponderosa Computing Linear Algebra Excel Add-ins. 

https://www.ponderosacomputing.com/
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2 Notation, Implementation, and Numerical Precision 

2.1 Linear Algebra Notation 

The Ponderosa Computing Linear Algebra Excel Add-ins interpret Microsoft Excel spreadsheet 

arrays as linear algebra matrices or vectors. 

A linear algebra matrix is a two-dimensional rectangular array of elements consisting of 

numbers, symbols, or expressions arranged in rows and columns. A matrix of m rows and n 

columns consists of elements 𝑥𝑖𝑗, where i is the row location and j is the column location of the 

element: 

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] . 

Numerical linear algebra operations are defined for matrices and vectors with all elements 

defined on the domain of complex numbers ℂ. Given that Microsoft Excel does not natively 

support complex numbers, we further restrict our consideration to matrices and vectors with all 

elements defined on the domain of real numbers ℝ = (-∞, +∞). 

A two-dimensional Excel spreadsheet array consisting of multiple rows and columns of adjacent 

cells can naturally be interpreted as a matrix and can be used as a matrix argument or return 

value by Ponderosa Computing Linear Algebra Excel Add-in worksheet functions. 

The transpose operation 𝒀 = 𝑿𝑻 on an m x n matrix X creates an n x m matrix Y with rows and 

columns interchanged: 

𝒀 = 𝑿𝑻 = [

𝑦11 𝑦12 ⋯ 𝑦1𝑚

𝑦21 𝑦22 ⋯ 𝑦2𝑚

⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 ⋯ 𝑦𝑛𝑚

] ,  𝑤ℎ𝑒𝑟𝑒 𝑦𝑖𝑗 = 𝑥𝑗𝑖 . 

A linear algebra row vector is a 1 x m matrix, consisting of a single row of m elements: 

𝒙 =  [𝑥1 𝑥2 … 𝑥𝑚] . 

An Excel spreadsheet array consisting of a single row of adjacent cells can naturally be 

interpreted as a row vector and can be used as a row vector argument or return value by 

Ponderosa Computing Linear Algebra Excel Add-in worksheet functions. 

The transpose of a row vector is a column vector, an m x 1 matrix consisting of a single column 

of m elements: 
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𝒙𝑇 = [𝑥1 𝑥2 … 𝑥𝑚]𝑇  = [

𝑥1

𝑥2

⋮
𝑥𝑚

] . 

An Excel spreadsheet array consisting of a single column of adjacent cells can naturally be 

interpreted as a column vector and can be used as a column vector argument or return value by 

Ponderosa Computing Linear Algebra Excel Add-in worksheet functions. 

2.2 These Add-ins Use the CLAPACK Implementation of LAPACK 

LAPACK [1] is a freely-available, peer-reviewed numerical linear algebra software package that 

provides routines for solving systems of simultaneous linear equations, computing least-squares 

solutions of linear systems of equations, and computing eigenvalue and singular value 

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur, 

generalized Schur) are also provided, as are related computations such as estimating condition 

numbers. 

The Netlib Repository provides a cross-platform Fortran source distribution of LAPACK [2] and 

a C source distributions of CLAPACK [3]. Instructions and tools for building CLAPACK on the 

Windows platform are available from the University of Tennessee Innovative Computing 

Laboratory [4]. The Ponderosa Computing Linear Algebra Excel Add-ins use the CLAPACK 

implementation of the LAPACK software package. 

2.3 The Add-in Computations use IEEE 754 Double Precision Format 

The numerical linear algebra computations are all defined for matrix and vector elements defined 

on the domain of real numbers ℝ = (-∞, +∞). To describe limiting behavior of linear algebra 

computations it can be useful to define them for matrix and vector elements defined on the 

domain of the affinely extended real numbers [-∞, +∞], which adds the elements +∞ (positive 

infinity) and -∞ (negative infinity) to the real numbers. 

The Ponderosa Computing Linear Algebra Excel Add-ins implement their worksheet array 

functions using the double precision format defined by the IEEE Standard 754 for Binary 

Floating-Point Arithmetic [5]. This format includes representations of signed zeros and 

normalized, denormalized, and nonfinite (infinite and indeterminate) floating point numbers. 

2.3.1 Machine Constants 

We define here some double precision constants that appear later in this document. 

𝑒𝑝𝑠 : The relative machine precision, the distance from 1.0 to the next largest double-precision 

number. This number is 𝑒𝑝𝑠 =  dlamch_(P) =  2−52 =  2.2204460492503131𝑒 − 016. 

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 : The minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛 does not overflow. 

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 =  dlamch_(S) = 2.2250738585072014𝑒 − 308. 
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2.3.2 Worksheet Functions Do Not Support Nonfinite Matrix Elements 

The CLAPACK implementation does not reliably handle nonfinite matrix or vector elements. 

For example, some computational loops are skipped when a factor is zero under the assumption 

that the skipped loop would have no impact on the computed results [7]. But this may fail to 

propagate nonfinite values or fail to detect invalid operations. 

Microsoft Excel does not support nonfinite floating point matrix or vector elements [6] so the 

Ponderosa Computing Linear Algebra Excel Add-in worksheet functions will not encounter 

matrix or vector arguments containing nonfinite floating point elements. 

2.3.3 Worksheet Function Finite Return Values May be Modified by Excel 

Microsoft Excel does not support IEEE 754 denormalized numbers. As an example, for the 

matrix 

𝑨 =  [
1𝐸 − 154 0

0 1𝐸 − 154
] , 

the Ponderosa Computing Linear Algebra Excel Add-in worksheet function LA.DET() returns 

the denormalized value 1.000000000000e-308#DEN to Excel. Excel then truncates this 

denormalized value to 0.0. 

Both Microsoft Excel and the Ponderosa Computing Linear Algebra Excel Add-ins internally 

support normalized IEEE 754 double precision numbers with 53 binary digits of precision 

(equivalent to nearly 16 decimal digits of precision). However, Excel displays at most 15 

decimal digits of precision in numeric values [6]. 
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3 Worksheet Functions 
 

The Ponderosa Computing Linear Algebra Excel Add-ins implement most of their worksheet 

functions using version 3.2.1 of CLAPACK [3]. This implementation of CLAPACK was 

machine translated by Netlib from Fortran 77 to ANSI C using the f2c tool and version 3.2.1 of 

LAPACK [2]. The Ponderosa Computing Linear Algebra Excel Add-ins use the reference BLAS 

library included with this CLAPACK distribution. 

3.1 Matrix Creation and Extraction 

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet 

functions for creating matrices and extracting the diagonals of a matrix: 

Create a constant matrix LA.GEN.CON, LA.RGN.CON 

Create a random matrix LA.GEN.RAN, LA.RGN.RAN 

Create an identity matrix LA.GEN.IDN 

Create a diagonal matrix LA.GEN.DIAG 

Extract diagonal elements LA.XDIAG.C, LA.XDIAG.R 

3.1.1 Create a Constant Matrix 

The worksheet function LA.GEN.CON(m, n, value) returns an m x n matrix with entries all 

equal to value. If m < 1 or n < 1 then this worksheet function returns the #VALUE! error. 

The worksheet function LA.RNG.CON(value) returns a region-filling matrix with entries all 

equal to value. 

3.1.2 Create a Random Matrix 

The worksheet function LA.GEN.RAN(m, n, minimum, maximum) returns an m x n matrix with 

random entries in [minimum, maximum). If m < 1 or n < 1 or maximum < minimum then this 

worksheet function returns the #VALUE! error. 

The worksheet function LA.RNG.RAN(minimum, maximum) returns a region-filling matrix 

with random entries in [minimum, maximum). If maximum < minimum then this worksheet 

function returns the #NUM! error. 

These worksheet functions generate uniformly distributed random elements in the  interval 

[minimum, maximum] using a Mersenne Twister pseudo-random generator of 32-bit numbers 

with a state size of 19937 bits provided by the C++11 standard library. This generator is 

initialized at library creation time, when Excel loads a Ponderosa Computing Linear Algebra 

Excel Add-in. 
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3.1.3 Create an Identity Matrix 

The worksheet function LA.GEN.IDN(n) returns an n x n identity matrix, 𝑰𝒏 , of order n. If n < 1 

then this worksheet function returns the #VALUE! error. 

3.1.4 Create a Diagonal Matrix 

The worksheet function LA.GEN.DIAG(D) returns an n x n diagonal matrix where n is the size 

of the argument matrix D and the diagonal elements of the returned matrix contain the elements 

of the matrix D in row-major order. 

3.1.5 Extract Diagonal Elements 

The worksheet functions LA.XDIAG.C(A) and LA.XDIAG.R(A) return the min(m, n) main 

diagonal elements of an m x n matrix A. The worksheet function LA.XDIAG.C(A) returns the 

diagonal elements as a min(m, n)-element column vector. The worksheet function 

LA.XDIAG.R(A) returns the diagonal elements as a min(m, n)-element row vector. 

3.2 Scalar-Valued Matrix Functions 

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following scalar-valued 

matrix functions: 

1-norm (column norm) LA.NORM1 

Infinity-norm (row norm) LA.NORMINF 

Frobenius norm LA.NORMF 

2-norm (spectral norm) LA.NORM2 

Rank LA.RANK 

Spectral radius of a symmetric matrix LA.SRAD 

Trace of square matrix LA.TRACE 

1-norm inverse condition number estimate of square matrix LA.ICNBR1 

Infinity-norm inverse condition number estimate of square matrix LA.ICNBRINF 

Determinant of square matrix LA.DET 
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3.2.1 1-Norm (Column Norm) 

The worksheet function LA.NORM1(A) returns the 1-norm (column norm, ‖𝑨‖1 ) of a matrix A. 

This is the maximum absolute column sum of the elements of an m x n matrix A: 

 ‖𝑨‖1 = max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

 

This worksheet function computes the 1-norm of A using the routine dlange_() from 

CLAPACK v 3.2.1. 

3.2.2 Infinity-Norm (Row Norm) 

The worksheet function LA.NORMINF(A) returns the infinity-norm (row norm, ‖𝑨‖∞ ) of a 

matrix A. This is the maximum absolute row sum of the elements of an m x n matrix A: 

 ‖𝑨‖∞ = max
1≤𝑖≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑗=1

 

This worksheet function computes the infinity-norm of A using routine dlange_() from 

CLAPACK v 3.2.1. 

3.2.3 Frobenius-Norm 

The worksheet function LA.NORMF(A) returns the Frobenius-norm (‖𝑨‖𝐹 ) of a matrix A. This 

is the square root of the sum of absolute squares (root mean square) of the elements of an m x n 

matrix A: 

 ‖𝑨‖𝐹 = √∑∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

 

This worksheet function computes the Frobenius norm of A using routine dlange_() from 

CLAPACK v 3.2.1. 

3.2.4 2-Norm (Spectral Norm) 

The worksheet function LA.NORM2(A) returns the 2-norm (spectral norm, ‖𝑨‖2 ) of an m x n 

matrix A. This is the largest singular value of A: 

‖𝑨‖2 = 𝜎max (𝑨) . 
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This worksheet function computes the min(m, n) singular values of A using routine dgesvd_() 

from CLAPACK v 3.2.1. 

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or 

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find 

all the singular values of A then this worksheet function returns the #NUM! error.  

3.2.5 Rank 

The column rank of an m x n matrix A is the maximum number of linearly independent column 

vectors of A. The row rank of an m x n matrix A is the maximum number of linearly 

independent row vectors of A. The column rank and the row rank are equal, and this is called the 

rank of the matrix A. The rank of an m x n matrix A is also the number of nonzero singular 

values of A. 

The worksheet function LA.RANK(A) returns the rank of A. This function computes the min(m, 

n) singular values of A using routine dgesvd_() from CLAPACK v 3.2.1. The rank is then 

determined as the number of computed singular values that are significantly greater than zero. 

The Ponderosa Computing Linear Algebra Excel Add-ins use the threshold value 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =    max (𝑠𝑓𝑚𝑖𝑛 , max (𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ 𝜎max (𝐴))   . 

A computed singular value is considered significantly greater than zero if it exceeds this 

threshold. Here 𝑠𝑎𝑓𝑒𝑚𝑖𝑛 is the minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛 

does not overflow, 𝑒𝑝𝑠 is the relative machine precision, and 𝜎max (𝐴) is the largest singular 

value of A. 

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or 

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find 

all the singular values of A then this worksheet function returns the #NUM! error.  

3.2.6 Spectral Radius 

Let 𝜆1, 𝜆2, ... , 𝜆𝑛 be the (real) eigenvalues of an n x n symmetric (real) matrix A. Then the 

spectral radius of A is: 

𝜌(𝑨) =  max
𝑖

(|𝜆𝑖|) . 

The worksheet function LA.SRAD(A) returns the spectral radius of A. If A is not symmetric this 

worksheet function returns the #VALUE! error. 

This worksheet function computes the eigenvalues of A using routine dsyev_() from 

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all 

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or 
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QR algorithm. If this algorithm fails to find all of the eigenvalues of A in at most 30*n iterations 

then this worksheet function LA.SRAD() returns the #NUM! error. 

3.2.7 Trace 

The worksheet function LA.TRACE(A) returns the trace of an n x n matrix A. This is the sum of 

the main diagonal elements of A: 

𝑡𝑟(𝑨) = ∑𝑎𝑖𝑖

𝑛

𝑖=1

 

This worksheet function computes the trace directly from its definition. If A is not square this 

worksheet function returns the #VALUE! error. 

3.2.8 1-Norm Inverse Condition Number Estimate 

The worksheet function LA.ICNBR1(A) returns the inverse of a 1-norm condition number 

estimate of an n x n matrix A. If A is not square this worksheet function returns the #VALUE! 

error. 

LA.ICNBR1(A) starts by computing ‖𝑨‖1 using routine dlange_() from CLAPACK v 3.2.1 

and returns zero if ‖𝑨‖1 = 0. 

LA.ICNBR1(A) then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU 

factorization A = PLU using partial pivoting with row interchanges. If routine 

dgetrf_()determines the matrix A is exactly singular then LA.ICNBR1(A) returns 0. 

Otherwise, LA.ICNBR1(A) estimates ‖𝑨−𝟏‖
1
 using the LU factorization and routine 

dgecon_() from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
1
 estimate is zero. Otherwise 

LA.ICNBR1(A) returns the inverse condition number estimate 

𝑐 =
1

‖𝑨‖1‖𝑨−𝟏‖1
 

LA.ICNBR1(A) returns the inverse of the 1-norm condition number estimate of a matrix, rather 

than the condition number estimate of the matrix, itself, to provide a zero return value for 

singular matrices. 

3.2.9 Infinity-Norm Inverse Condition Number Estimate 

The worksheet function LA.ICNBRINF(A) returns the inverse of an infinity-norm condition 

number estimate of an n x n matrix A. If A is not square this worksheet function returns the 

#VALUE! error. 
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LA.ICNBRINF(A) starts by computing ‖𝑨‖∞ using routine dlange_() from CLAPACK v 

3.2.1 and returns zero if ‖𝑨‖∞ = 0. 

LA.ICNBRINF(A) then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU 

factorization A = PLU using partial pivoting with row interchanges. If routine 

dgetrf_()determines the matrix A is exactly singular then LA.ICNBRINF(A) returns 0. 

Otherwise, LA.ICNBRINF(A) estimates ‖𝑨−𝟏‖
∞

 using the LU factorization and routine 

dgecon_() from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
∞

 estimate is zero. Otherwise 

LA.ICNBRINF(A) returns the inverse condition number estimate 

𝑐 =
1

‖𝑨‖∞‖𝑨−𝟏‖∞
 

LA.ICNBRINF(A) returns the inverse of the infinity-norm condition number estimate of a 

matrix, rather than the condition number estimate of the matrix, itself, to provide a zero return 

value for singular matrices. 

3.2.10 Determinant 

The worksheet function LA.DET(A) returns the determinant of a square matrix A. If A is not 

square this worksheet function returns the #VALUE! error. 

LA.DET(A) computes the determinant of A by using routine dgetrf_() from CLAPACK v 

3.2.1 to compute the LU factorization A = PLU using partial pivoting with row interchanges. If 

routine dgetrf_()determines the matrix A is exactly singular then LA.DET(A) returns 0. 

Otherwise, LA.DET(A) accumulates the product of the diagonal entries of U with sign 

adjustment according to pivot row interchanges and scaling to avoid intermediate overflow. 

3.3 Linear System Solvers 

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following linear system 

solvers: 

Full rank square system solvers LA.SYS.SLV, LA.SYS.SLVE 

General least-squares system solvers (via LQ/QR) LA.SYS.LS, LA.SYS.LSE 

General least-squares system solvers (via SVD) LA.SYS.LSS, LA.SYS.LSSE 

3.3.1 Full Rank Square System Solvers 

The worksheet functions LA.SYS.SLV(A,B) and LA.SYS.SLVE(A,B) return the solution matrix 

𝑿 to a real system of linear equations using equilibration and iterative refinement as needed: 
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𝑨 𝑿 =  𝑩 . 

Here A is an n x n matrix and 𝑩 is a n x p matrix. The solution matrix 𝑿 is n x p. If A is not 

square or if matrix 𝑩 does not have n rows these worksheet functions return the #VALUE! error. 

The worksheet function LA.SYS.SLV(A,B) returns the matrix solution 𝑿 as a n x p matrix. 

The worksheet function LA.SYS.SLVE(A,B) returns the matrix solution 𝑿 in the first n rows of 

an (n+1) x p augmented solution matrix 𝑿𝑨. It also returns a forward error bound e for each 

column of the matrix solution 𝑿 in the last row of the augmented matrix solution 𝑿𝑨. 

𝑿𝑨 =

[
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝 ]
 
 
 
 

 . 

For each column j of the augmented solution matrix, the forward error bound estimate ej bounds 

the relative error in the computed solution column 𝒙𝒋. If 𝒙𝒋 is the computed solution column and 

𝒙𝒋𝒕 is the true solution column, then the relative error for that column is bounded by: 

‖𝒙𝒋 − 𝒙𝒋𝒕‖∞

‖𝒙𝒋‖∞

≤ 𝑒 

That is, ej is an estimated upper bound for the magnitude of the largest element in 𝒙𝒋 − 𝒙𝒋𝒕 

divided by the magnitude of the largest element in 𝒙𝒋. This estimate is almost always a slight 

overestimate of the true error. 

These worksheet functions compute the solution matrix 𝑿 by using routine dgesvx_() from 

CLAPACK v 3.2.1, using equilibration and iterative refinement as needed. If routine 

dgesvx_()determines the matrix A is exactly singular then these worksheet functions return the 

#NUM! error. 

3.3.2 General Least-Squares System Solvers (via Orthogonal Factorizations) 

The worksheet functions LA.SYS.LS(A,b) and LA.SYS.LSE(A,b) return the minimum-norm 

solution vector 𝒙 to a real linear least squares problem: 

𝐦𝐢𝐧
𝒙

‖𝒃 −  𝑨𝒙‖𝟐  , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 . 

These worksheet functions use a complete orthogonal factorization of 𝑨. Here 𝑨 is an m x n 

matrix which may be rank-deficient and 𝒃 is an m-vector. The solution is the minimum-2-norm 

n-vector 𝒙 achieving the minimum 2-norm residual. 
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These worksheet functions can solve for several (p) right hand side vectors 𝒃𝒋 and solution 

vectors 𝒙𝒋 in a single call. The p right hand side vectors 𝒃𝒋 are stored as the columns of a m x p 

matrix 𝑩 and LA.SYS.LS(A,B) and LA.SYS.LSE(A,B) return the p solution vectors 𝒙𝒋 as the p 

columns of the n x p solution matrix 𝑿. If matrix 𝑩 does not have m rows this worksheet 

function returns the #VALUE! error. 

These worksheet functions compute the solution matrix 𝑿 by using routine dgelsy_() from 

CLAPACK v 3.2.1. This routine first computes a QR factorization of 𝑨 with column pivoting. It 

then determines the effective rank r of 𝑨 and then refactors a reduced system into an r x r 

triangular system which is then solved. If routine dgelsy_()determines the matrix 𝑨 has 

effective rank 0 then these worksheet functions return the zero matrix. 

The worksheet function LA.SYS.LS(A,B) returns the matrix solution 𝑿 as a n x p matrix. 

The worksheet function LA.SYS.LSE(A,B) returns the matrix solution 𝑿 in the first n rows of an 

(n+1) x p augmented solution matrix 𝑿𝑨. If the matrix 𝑨 has m ≥ n (we have an overdetermined 

system) with full column rank then the worksheet function also returns a forward error bound for 

each column of the matrix solution 𝑿 in the last row of the augmented matrix solution 𝑿𝑨. 

Otherwise the worksheet function returns the values -1 in this last row. 

The error bounds for the full column rank overdetermined case are computed in the manner 

described here: 

http://www.netlib.org/lapack/lug/node82.html 

3.3.3 General Least-Squares System Solvers (via SVD) 

The worksheet functions LA.SYS.LSS(A,b) and LA.SYS.LSSE(A,b) return the minimum-norm 

solution vector 𝒙 to a real linear least squares problem: 

𝐦𝐢𝐧
𝒙

‖𝒃 −  𝑨𝒙‖𝟐  , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 . 

These worksheet functions use the singular value decomposition of 𝑨. Here 𝑨 is an m x n matrix 

which may be rank-deficient and 𝒃 is an m-vector. The solution is the minimum-2-norm n-vector 

𝒙 achieving the minimum 2-norm residual. 

These worksheet functions can solve for several (p) right hand side vectors 𝒃𝒋 and solution 

vectors 𝒙𝒋 in a single call. The p right hand side vectors 𝒃𝒋 are stored as the columns of a m x p 

matrix 𝑩 and LA.SYS.LSS(A,B) and LA.SYS.LSSE(A,B) return the p solution vectors 𝒙𝒋 as the 

p columns of the n x p solution matrix 𝑿. If matrix 𝑩 does not have m rows this worksheet 

function returns the #VALUE! error. 

These worksheet functions compute the solution matrix 𝑿 by using routine dgelss_() from 

CLAPACK v 3.2.1. This routine first computes the singular value decomposition of 𝑨. It then 

determines the effective rank r of 𝑨, zeros out the insignificant portion of the SVD, and solves 

http://www.netlib.org/lapack/lug/node82.html
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the reduced system. If routine dgelss_()determines the matrix 𝑨 has effective rank 0 then 

these worksheet functions return the zero matrix. 

The worksheet function LA.SYS.LSS(A,B) returns the matrix solution 𝑿 as a n x p matrix. 

The worksheet function LA.SYS.LSSE(A,B) returns the matrix solution 𝑿 in the first n rows of 

an (n+1) x p augmented solution matrix 𝑿𝑨. If the matrix A has m ≥ n (we have an 

overdetermined system) with full column rank then the worksheet function also returns a forward 

error bound for each column of the matrix solution 𝑿 in the last row of the augmented matrix 

solution 𝑿𝑨. Otherwise the worksheet function returns the values -1 in this last row. 

The error bounds for the full column rank overdetermined case are computed in the manner 

described here: 

http://www.netlib.org/lapack/lug/node82.html 

3.4 Singular Value Decomposition 

The singular value decomposition of an m x n (real) matrix 𝑨 is a factorization of 𝑨 into the 

form: 

𝑨 =  𝑼 𝜮 𝑽𝑇 

where 𝑼 is a m x m matrix, 𝑽𝑇 is an n x n matrix, and 𝜮 is a m x n rectangular diagonal matrix 

with p = min(m,n) nonnegative entries on the main diagonal. 

The nonnegative diagonal entries of 𝜮 are the singular values of 𝑨 , {𝜎1, 𝜎2, … 𝜎min (𝑚,𝑛)} , 

arranged in descending order:  𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min (𝑚,𝑛) ≥ 0 . 

The matrices 𝑼 and 𝑽 are orthonormal: 

 𝑼𝑇𝑼 =  𝑼 𝑼𝑇 = 𝑰𝒎 , 𝑽𝑇𝑽 =  𝑽 𝑽𝑇 = 𝑰𝒏 , 

where 𝑰𝒎  and 𝑰𝒏  denote the identity matrices of order m and n, respectively. The m columns of 

𝑼, {𝒖1, 𝒖2, …𝒖𝑚}, are called the left singular vectors of 𝑨 . The n columns of 𝑽, {𝒗1, 𝒗2, … 𝒗𝑛}, 
are called the right singular vectors of 𝑨 . 

Since 𝜮 is a m x n rectangular diagonal matrix with p = min(m,n), the singular value 

decomposition can be represented as the thin singular value decomposition: 

𝑨 =  𝑼𝒑 𝜮𝒑 𝑽𝒑
𝑇 , 

Where 𝑼𝒑  is the m x p matrix consisting of the first p columns of 𝑼 , 𝜮𝒑 is the p x p upper 

diagonal portion of 𝜮 , and 𝑽𝒑  is the n x p matrix consisting of the first p columns of 𝑽 . The p 

columns of 𝑼𝒑 and the p columns of 𝑽𝒑 are orthonormal: 

http://www.netlib.org/lapack/lug/node82.html
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𝑼𝒑
𝑇𝑼𝒑 = 𝑰𝒑 , 𝑽𝒑

𝑇𝑽𝒑 = 𝑰𝒑 , 

where 𝑰𝒑  denote the identity matrix of order p.  

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet 

functions computing the thin singular value decomposition or parts thereof: 

Singular value decomposition LA.SVD 

Singular values LA.SNGVL.C, LA.SNGVL.R 

Singular values with error bound LA.SNGVLE.C, LA.SNGVLE.R 

Left or right singular vectors LA.LSNGVC, LA.RSNGVC 

3.4.1 Singular Value Decomposition 

The worksheet function LA.SVD(A) returns the p = min(m,n) singular values, their associated 

left singular vectors, and their associated right singular vectors of 𝑨 in the p columns of a 

(m+n+1) x p matrix 𝑺: 

𝑺 =

[
 
 
 
 
 
 

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

𝑣11 𝑣21 ⋯ 𝑣𝑝1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑝𝑛 ]

 
 
 
 
 
 

 

The first row of 𝑺 contains the p singular values of 𝑨 in descending order, {𝜎1, 𝜎2, … 𝜎p} . The 

columns of the next m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}. The columns 

of the last n rows contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}. 

The worksheet function LA.SVD(A) computes the singular value decomposition of 𝑨 using 

routine dgesvd_() from CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to 

compute the singular values and singular vectors of an (upper or lower) bidiagonal matrix using 

the implicit zero-shift QR algorithm. If this algorithm fails to find all the singular values of 𝑨 

then this worksheet function returns the #NUM! error.  

3.4.2 Singular Values 

The worksheet functions LA.SNGVL.C(A) and LA.SNGVL.R(A) return the singular values of a 

m x n matrix 𝑨 in descending order. The worksheet function LA.SNGVL.C(A) returns the p = 
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min(m,n) singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order as an p-element column vector 

𝒔: 

𝒔 =  [

𝜎1

𝜎2

⋮
𝜎p

]  . 

The worksheet function LA.SNGVL.R(A) returns the singular values as an p-element row 

vector. 

These worksheet functions compute the singular values of 𝑨 using routine dgesvd_() from 

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular 

values of an (upper or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this 

algorithm fails to find all the singular values of 𝑨 then these worksheet functions return the 

#NUM! error.  

3.4.3 Singular Values With Error Bound 

Let 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min (𝑚,𝑛) ≥ 0 be the p = min(m,n) singular values of an m x n matrix A.  

The worksheet functions LA.SNGVLE.C(A) and LA.SNGVLE.R(A) return the singular values 

of a m x n matrix 𝑨 in descending order followed by a computation error bound. The worksheet 

function LA.SNGVLE.C(A) returns the p = min(m,n) singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in 

descending order by a forward error bound estimate e as an (p+1)-element column vector sA: 

𝒔𝑨 = 

[
 
 
 
 
𝜎1

𝜎2

⋮
𝜎p

𝑒 ]
 
 
 
 

  . 

The worksheet function LA.SNGVLE.R(A) returns the singular values and forward error bound 

as an (p+1)-element row vector. 

The forward error bound estimate e bounds the absolute error in the computed singular values. If 

𝜎𝑖 is the i-th computed singular value and 𝜎𝑖𝑡 is the i-th true singular value, then the absolute 

error in 𝜎𝑖 is bounded by: 

|𝜎𝑖 − 𝜎𝑖𝑡| ≤ 𝑒 

This estimate is almost always a slight overestimate of the true error. 

These worksheet functions compute the singular values of 𝑨 using routine dgesvd_() from 

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular 

values of an (upper or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this 
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algorithm fails to find all the singular values of 𝑨 then these worksheet functions return the 

#NUM! error.  

The singular values forward error bound e is: 

𝑒 = max(𝑠𝑓𝑚𝑖𝑛 ,max(𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ σ1)  . 

This error bound is described here: http://www.netlib.org/lapack/lug/node97.html, but this 

methods uses p(m,n) = max(m,n) in place of p(m,n) = 1 as the "modestly growing function of n" 

and uses machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is 

similar to that found in the example program: http://www.nag.com/lapack-ex/node128.html . 

3.4.4 Left Singular Vectors 

The worksheet function LA.LSNGVC(A) returns the p = min(m,n) singular values and first p left 

singular vectors of a m x n matrix 𝑨 in the p columns of a (m+1) x p matrix 𝑺: 

𝑺 = [

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

] 

The first row of 𝑺 contains the p singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order. The 

columns of the remaining m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}. 

The worksheet function LA.LSNGVC(A) computes the singular value decomposition of 𝑨 using 

routine dgesvd_() from CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to 

compute the singular values and singular vectors of an (upper or lower) bidiagonal matrix using 

the implicit zero-shift QR algorithm. If this algorithm fails to find all the singular values of 𝑨 

then this worksheet function returns the #NUM! error.  

3.4.5 Right Singular Vectors 

The worksheet function LA.RSNGVC(A) returns the p = min(m,n) singular values and first p 

right singular vectors of a m x n matrix 𝑨 in the p rows of a p x (n+1) matrix 𝑺: 

𝑺 = [

𝜎1 𝑣11 𝑣12 ⋯ 𝑣1𝑛

𝜎2 𝑣21 𝑣22 ⋯ 𝑣2𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝜎𝑝 𝑣𝑝1 𝑣𝑝2 ⋯ 𝑣𝑝𝑛

] 

The first column of 𝑺 contains the p singular values of 𝑨 in descending order. The rows of the 

remaining n columns of 𝑺 contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}. 

 

http://www.netlib.org/lapack/lug/node97.html
http://www.nag.com/lapack-ex/node128.html
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The worksheet function LA.RSNGVC(A) computes the singular value decomposition of 𝑨 using 

routine dgesvd_() from CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to 

compute the singular values and singular vectors of an (upper or lower) bidiagonal matrix using 

the implicit zero-shift QR algorithm. If this algorithm fails to find all the singular values of 𝑨 

then this worksheet function returns the #NUM! error.  

3.5 Eigenvalues and Eigenvectors 

A right eigenvector of an n x n symmetric (real) matrix 𝑨 is a nonzero n-vector 𝒗 such that the 

matrix product: 

𝑨𝒗 = 𝜆𝒗 .  

Here λ is a real number (scalar) called the eigenvalue of 𝑨 corresponding to the right eigenvector 

𝒗. The set of all eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}, each paired with its corresponding eigenvalue, 

{𝜆1, 𝜆2, … 𝜆𝑛}, is called the eigensystem of the matrix 𝑨. It can be expressed as: 

𝑨 𝑽 =  𝑽 𝜦. 

Here 𝜦 is a n x n diagonal matrix with diagonal entries {𝜆1, 𝜆2, … 𝜆𝑛} and 𝑽 is a n x n matrix with 

columns  {𝒗1, 𝒗2, … 𝒗𝑛}. 

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet 

functions computing the eigenvalues and right eigenvectors: 

Eigenvalues LA.EGNVL.C, LA.EGNVL.R 

Eigenvalues with error bound LA.EGNVLE.C, LA.EGNVLE.R 

Eigenvalues and right eigenvectors LA.REGNVC 

3.5.1 Eigenvalues 

The worksheet functions LA.EGNVL.C(A) and LA.EGNVL.R(A) return the (real) eigenvalues 

of an n x n symmetric (real) matrix 𝑨. The worksheet function LA.EGNVL.C(A) returns the 

eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, as an n-element column 

vector 𝛌: 

𝛌 =  [

𝜆1

𝜆2

⋮
𝜆n

]  . 

The worksheet function LA.EGNVL.R(A) returns the eigenvalues of 𝑨 as an n-element row 

vector. If 𝑨 is not symmetric these worksheet functions return the #NUM! error. 
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These worksheet functions compute the eigenvalues of 𝑨 using routine dsyev_() from 

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all 

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or 

QR algorithm. If this algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations 

then these worksheet functions return the #NUM! error.  

3.5.2 Eigenvalues with Error Bounds 

The worksheet functions LA.EGNVLE.C(A) and LA.EGNVLE.R(A) return the (real) 

eigenvalues of an n x n symmetric (real) matrix 𝑨 followed by a forward error bound e. The 

worksheet function LA.EGNVLE.C(A) returns the eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending 

order, 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, followed by a forward error bound estimate e as an (n+1)-element 

column vector 𝛌𝑨: 

𝛌𝑨 = 

[
 
 
 
 
𝜆1

𝜆2

⋮
𝜆n

𝑒 ]
 
 
 
 

  . 

The worksheet function LA.EGNVLE.R(A) returns the eigenvalues and error bound as an (n+1)-

element row vector. If 𝑨 is not symmetric these worksheet functions return the #NUM! error. 

The forward error bound estimate e bounds the absolute error in the computed eigenvalues. If 𝜆𝑖 

is the i-th computed eigenvalue and 𝜆𝑖𝑡 is the i-th true eigenvalue, then the absolute error in 𝜆𝑖 is 

bounded by: 

|𝜆𝑖 − 𝜆𝑖𝑡| ≤ 𝑒 

This estimate is almost always a slight overestimate of the true error. 

These worksheet functions compute the eigenvalues of 𝑨 using routine dsyev_() from 

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all 

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or 

QR algorithm. If this algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations 

then these worksheet functions return the #NUM! error. 

The Ponderosa Computing Linear Algebra Excel Add-ins use the eigenvalues error bound e is: 

𝑒 = max (𝑠𝑓𝑚𝑖𝑛 , 𝑛 ∗ 𝑒𝑝𝑠 ∗ max
𝑖

(|𝜆𝑖|))   . 

This error bound is described here: http://www.netlib.org/lapack/lug/node90.html, but this 

method uses p(n) = n in place of p(n) = 1 as the "modestly growing function of n" and uses 

machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is similar to that 

found in the example program: http://www.nag.com/lapack-ex/node71.html. 

http://www.netlib.org/lapack/lug/node90.html
http://www.nag.com/lapack-ex/node71.html
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3.5.3 Eigenvalues and Right Eigenvectors 

The worksheet function LA.REGNVC(A) returns the eigenvalues and right eigenvectors of an n 

x n symmetric matrix A in the n columns of the (n+1) x n matrix matrix 𝑽𝑨. 

𝑽𝑨 = [

𝜆1 𝜆2 ⋯ 𝜆𝑛

𝑣11 𝑣21 ⋯ 𝑣𝑛1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑛𝑛

] 

The first row of 𝑽𝑨 contains the n eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 𝜆1 ≤ 𝜆2 ≤
⋯ ≤ 𝜆n. The columns of the remaining n rows of 𝑽𝑨 contain the corresponding n right 

eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}. If 𝑨 is not symmetric this worksheet function returns the 

#NUM! error. 

This worksheet function computes the eigenvalues of 𝑨 using routine dsyev_() from 

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all 

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or 

QR algorithm. If this algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations 

then this worksheet function returns the #NUM! error. 

3.6 Cholesky Factorization 

The upper triangular Cholesky factorization (or decomposition) of an n x n symmetric 

positive definite matrix A is the unique factorization of 𝑨 into 

𝑨 =  𝑼𝑇𝑼 

where 𝑼 is an n x n upper triangular matrix with positive entries on the diagonal. 

The lower triangular Cholesky factorization (or decomposition) of an n x n symmetric 

positive definite matrix A is the unique factorization of 𝑨 into 

𝑨 =  𝑳 𝑳𝑇 

where 𝑳 is an n x n lower triangular matrix with positive entries on the diagonal. 

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet 

functions computing the Cholesky factorizations of a symmetric positive definite matrix: 

Upper Cholesky factorization LA.CHOL.U 

Lower Cholesky factorization LA.CHOL.L 
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3.6.1 Upper and Lower Cholesky Factorizations 

The worksheet function LA.CHOL.U(A) returns the upper triangular Cholesky factorization of 

an n x n symmetric positive definite matrix 𝑨 as an n x n upper triangular matrix 𝑼 with positive 

entries on the diagonal. 

The worksheet function LA.CHOL.L(A) returns the lower triangular Cholesky factorization of 

an n x n symmetric positive definite matrix 𝑨 as an n x n lower triangular matrix 𝑳 with positive 

entries on the diagonal. 

These worksheet functions compute the Cholesky factorization of 𝑨 using routine dpotrf_() 

from CLAPACK v 3.2.1. If this algorithm determines the matrix 𝑨 is not positive definite then 

these worksheet functions return the #NUM! error. 

3.7 Alternative Matrix Multiplication and Transformation Operations 

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet 

functions serving as alternatives to the built-in Excel matrix multiplication and transpose array 

functions: 

Matrix multiplication LA.MUL 

Matrix transpose multiplication LA.TMUL, LA.MULT 

Matrix transpose LA.TRN 

3.7.1 Matrix Multiplication 

The worksheet function LA.MUL(A,B) returns the product of two matrices. The matrix 𝑨 must 

be m x n and the matrix B must be n x p with m, n, p > 0. Otherwise this worksheet function 

returns the #VALUE! error. 

This worksheet function computes the matrix product using routine dgemm_() from the 

CLAPACK v 3.2.1 BLAS package. LA.MUL(A,B) is an alternative to the Excel MMULT(A,B) 

built-in function. 

3.7.2 Matrix Transpose Multiplication 

The worksheet function LA.TMUL(A,B) returns the product of the transpose of the first matrix 

A times the second matrix B. The matrix A must be n x m and the matrix B must be n x p with 

m, n, p > 0. Otherwise this worksheet function returns the #VALUE! error. 

The worksheet function LA.MULT(A,B) returns the product of the first matrix A times the 

transpose of the second matrix B. The matrix A must be m x n and the matrix B must be p x n 

with m, n, p > 0. Otherwise this worksheet function returns the #VALUE! error. 
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These worksheet functions compute the matrix product using routine dgemm_() from the 

CLAPACK v 3.2.1 BLAS package. 

3.7.3 Matrix Transpose 

The worksheet function LA.TRN(A) returns the transpose of an m x n matrix A. Both m and n 

must be positive or this worksheet function returns the #VALUE! error. This worksheet function 

is an alternative to the Excel TRANSPOSE(A) built-in function. 
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4 Installing and Activating these Excel Add-ins 

There are three steps to enabling a Ponderosa Computing Linear Algebra Excel Add-in to be 

used in Excel spreadsheets. These are (1) installing the Add-in on your computer, (2) registering 

the Add-in with Excel, and (3) activating the Add-in in Excel. Here we describe these steps for 

the 32-bit Excel Add-in PcLinAlgXLL_32.xll. The steps for the 64-bit Excel Add-in 

PcLinAlgXLL_64.xll are similiar. 

Installing the 32-bit Excel Add-In on your Computer 

1. Go to the Ponderosa Computing downloads page 

http://www.ponderosacomputing.com/downloads/ and identify the installation package 

for the Ponderosa Computing Linear Algebra Excel Add-in. 

2. Click on the link to the Excel Add-in installation package. In the Opening dialog box that 

appears click Save File, and save the installation package at a convenient location on 

your computer. 

3. On your computer navigate to the location of the saved installation package and double-

click on the file. 

4. In the Open File – Security Warning dialog you can click on the Publisher link to verify 

the Digital Signature. Then click Run. 

5. The installation program will guide you through the rest of the process of installing the 

Excel Add-in on your computer. 

• A per-machine installation will install the 32-bit Excel Add-in 

PcLinAlgXLL_32.xll by default in C:\Program Files (x86)\Ponderosa 

Computing\PcLinAlgXLL_32. 

• A per-user installation will install the 32-bit Excel Add-in PcLinAlgXLL_32.xll 

by default in C:\Users\USER\AppData\Local\Programs\Ponderosa 

Computing\PcLinAlgXLL_32. 

6. You may delete the downloaded installation package. 

Registering and Activating the Excel Add-In in Excel 

1. Open a 32-bit version of Microsoft Excel. 

2. Click the File tab, click Options, and then click the Add-Ins category. 

3. In the Manage box, select Excel Add-ins, and then click Go. 

4. The Add-Ins dialog box appears. Click Browse, locate the Excel Add-in in its 

installation directory (see above), select it, and click OK. 

5. The Excel Add-in has now been registered with Excel. The Add-Ins dialog box reappears 

and now contains a checked entry for the Add-in. If you uncheck the entry for the Add-in 

and click OK, or if you click Cancel the Add-in will remain registered, but not activated. 

If you leave the entry checked and click OK the Add-in will also be activated and a 

confirmation message will appear. 

Activating a Registered Excel Add-In in Excel 

http://www.ponderosacomputing.com/downloads/
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If the Excel Add-in has been registered with, but not activated in Excel, then follow these steps 

to activate the Add-in so it is accessible from Excel worksheets: 

1. Open Excel (if not already open). 

2. Click the File tab, click Options, and then click the Add-Ins category. 

3. In the Manage box, click Excel Add-ins, and then click Go. 

4. The Add-Ins dialog box appears. Select the check box next to the Add-in you want to 

activate, and click OK. 

5. A confirmation message will appear. Dismiss it. 

The Excel Add-in is now loaded into Excel. 

The activated Excel Add-in will be loaded into Excel whenever Excel is started until it is 

inactivated. Also, the Excel Add-in command menu will appear in the Menu Commands section 

of the Add-Ins tab on the Ribbon. 
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5 Inactivating and Uninstalling these Excel Add-ins 

Should you decide to inactivate, unregister, uninstall, or remove a Ponderosa Computing Linear 

Algebra Excel Add-in from Excel or your computer, you can do so by following these 

instructions. 

Inactivating the Excel Add-In 

If an activated Excel Add-in is inactivated, it will remain registered with Excel, but not loaded 

when Excel starts. Follow these steps to inactivate the Excel Add-in: 

1. Open Excel (if not already open). 

2. Click the File tab, click Options, and then click the Add-Ins category. 

3. In the Manage box, click Excel Add-ins, and then click Go. 

4. In the Add-Ins dialog box clear the check box next to the Add-in that you want to 

inactivate and then click OK. 

5. A confirmation message will appear. Dismiss it. 

The command menu for an inactivated Excel Add-in will not appear in the Menu Commands 

section of the Add-Ins tab on the Ribbon. You can reactivate a registered Excel Add-in using the 

instructions above. 

Unregistering the Excel Add-In from Excel 

Inactivating the Excel Add-in does not unregister it from Excel. To unregister the Add-in from 

Excel you must first uninstall the Add-in from your computer and then remove it from Excel. 

These steps are described next. 

Uninstalling the Excel Add-In from your Computer 

Inactivating the Excel Add-in does not remove it from your computer. To remove the Add-in 

from your computer, you must uninstall it. 

1. Exit Excel (click the File tab, and then click Exit). 

2. Open the Control Panel (in Windows 10 open Settings in the Start Menu and select 

Apps). 

3. In the Control Panel, click Programs and Uninstall a program. 

4. Click the name of the Excel Add-in in the list of installed programs, and then click the 

Uninstall button. 

5. The Windows Installer dialog will appear. Click Yes. 

6. The installation program will guide you through the rest of the process of uninstalling the 

Excel Add-in from your computer. 

Removing an Uninstalled Add-In from Excel 

1. Open Excel. 

2. Click the File tab, click Options, and then click the Add-Ins category. 
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3. In the Manage box, click Excel Add-ins, and then click Go. 

4. The Add-Ins dialog box appears. Select the check box next to the Add-in you want to 

unregister. 

5. Excel will advise you that it cannot find the Add-in and ask you whether to delete it from 

the list. Click Yes. 

6. The Add-in will be removed from the list of available Add-ins. 
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7 License Notice 

The Ponderosa Computing Linear Algebra Excel Add-ins were built using the CLAPACK 

implementation of LAPACK, a freely-available software package from netlib at 

http://www.netlib.org/lapack. The license used for the LAPACK software is the modified BSD 

license: 

Copyright (c) 1992-2013 The University of Tennessee and The University 

                        of Tennessee Research Foundation.  All rights 

                        reserved. 

Copyright (c) 2000-2013 The University of California Berkeley. All 

                        rights reserved. 

Copyright (c) 2006-2013 The University of Colorado Denver.  All rights 

                        reserved. 

 

$COPYRIGHT$ 

 

Additional copyrights may follow 

 

$HEADER$ 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are 

met: 

 

- Redistributions of source code must retain the above copyright 

  notice, this list of conditions and the following disclaimer. 

 

- Redistributions in binary form must reproduce the above copyright 

  notice, this list of conditions and the following disclaimer listed 

  in this license in the documentation and/or other materials 

  provided with the distribution. 

 

- Neither the name of the copyright holders nor the names of its 

  contributors may be used to endorse or promote products derived from 

  this software without specific prior written permission. 

 

The copyright holders provide no reassurances that the source code 

provided does not infringe any patent, copyright, or any other 

intellectual property rights of third parties.  The copyright holders 

disclaim any liability to any recipient for claims brought against 

recipient by any third party for infringement of that parties 

intellectual property rights. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

http://www.netlib.org/lapack/#_licensing
http://www.netlib.org/lapack
http://www.netlib.org/lapack/LICENSE.txt
http://www.netlib.org/lapack/LICENSE.txt

