
Ponderosa Computing

Linear Algebra Excel Add-ins

Paul J. McClellan, Ph.D.

7 July 2020

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 2

Table of Contents

1 PONDEROSA COMPUTING LINEAR ALGEBRA EXCEL ADD-INS 4

2 NOTATION, IMPLEMENTATION, AND NUMERICAL PRECISION 6

2.1 LINEAR ALGEBRA NOTATION .. 6
2.2 THESE ADD-INS USE THE CLAPACK IMPLEMENTATION OF LAPACK 7
2.3 THE ADD-IN COMPUTATIONS USE IEEE 754 DOUBLE PRECISION FORMAT 7

2.3.1 Machine Constants.. 7

2.3.2 Worksheet Functions Do Not Support Nonfinite Matrix Elements 8

2.3.3 Worksheet Function Finite Return Values May be Modified by Excel 8

3 WORKSHEET FUNCTIONS .. 9

3.1 MATRIX CREATION AND EXTRACTION .. 9
3.1.1 Create a Constant Matrix ... 9
3.1.2 Create a Random Matrix .. 9

3.1.3 Create an Identity Matrix .. 10
3.1.4 Create a Diagonal Matrix ... 10

3.1.5 Extract Diagonal Elements ... 10
3.2 SCALAR-VALUED MATRIX FUNCTIONS ... 10

3.2.1 1-Norm (Column Norm) .. 11

3.2.2 Infinity-Norm (Row Norm) .. 11

3.2.3 Frobenius-Norm .. 11

3.2.4 2-Norm (Spectral Norm) ... 11
3.2.5 Rank .. 12

3.2.6 Spectral Radius ... 12
3.2.7 Trace ... 13
3.2.8 1-Norm Inverse Condition Number Estimate ... 13

3.2.9 Infinity-Norm Inverse Condition Number Estimate .. 13
3.2.10 Determinant .. 14

3.3 LINEAR SYSTEM SOLVERS ... 14
3.3.1 Full Rank Square System Solvers ... 14
3.3.2 General Least-Squares System Solvers (via Orthogonal Factorizations) 15

3.3.3 General Least-Squares System Solvers (via SVD) .. 16

3.4 SINGULAR VALUE DECOMPOSITION .. 17
3.4.1 Singular Value Decomposition ... 18
3.4.2 Singular Values ... 18

3.4.3 Singular Values With Error Bound ... 19
3.4.4 Left Singular Vectors .. 20
3.4.5 Right Singular Vectors .. 20

3.5 EIGENVALUES AND EIGENVECTORS .. 21
3.5.1 Eigenvalues ... 21
3.5.2 Eigenvalues with Error Bounds .. 22
3.5.3 Eigenvalues and Right Eigenvectors .. 23

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 3

3.6 CHOLESKY FACTORIZATION .. 23
3.6.1 Upper and Lower Cholesky Factorizations .. 24

3.7 ALTERNATIVE MATRIX MULTIPLICATION AND TRANSFORMATION OPERATIONS 24
3.7.1 Matrix Multiplication .. 24
3.7.2 Matrix Transpose Multiplication .. 24
3.7.3 Matrix Transpose .. 25

4 INSTALLING AND ACTIVATING THESE EXCEL ADD-INS 26

5 INACTIVATING AND UNINSTALLING THESE EXCEL ADD-INS 28

6 REFERENCES .. 30

7 LICENSE NOTICE ... 31

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 4

1 Ponderosa Computing Linear Algebra Excel Add-ins

In spite of the apparent similarities between Microsoft Excel spreadsheet arrays and the matrix

and vector elements of linear algebra, Microsoft Excel provides very little direct support of linear

algebra functions and operations. The few Excel functions that do support linear algebra

functions and operations are:

Array addition, subtraction, scalar multiplication +, -, *

Inner product SUMPRODUCT

Array transpose TRANSPOSE

Matrix multiplication MMULT

Matrix determinant MDETERM

Matrix inverse MINVERSE

Even this support is suspect. For example, it is not recommended to solve square systems of

linear equations using matrix inversion and multiplication. It is more efficient and accurate to

factor and solve systems of linear equations using triangularization methods. Nor is it

recommended to solve linear least-square (regression) problems by solving corresponding

normal equations. Instead, an orthogonal factorization method or singular value decomposition

should be used for greater numerical stability.

LAPACK [1] is a freely-available, peer-reviewed computational linear algebra software package

that provides routines for solving systems of simultaneous linear equations, computing least-

squares solutions of linear systems of equations, and computing eigenvalue and singular value

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur,

generalized Schur) are also provided, as are related computations such as estimating condition

numbers.

The purpose of the Ponderosa Computing Linear Algebra Excel Add-ins are to provide Excel

linear algebra computations as scalar and array worksheet functions augmenting or replacing

those provided as built-in Excel functions. These Add-ins:

• Use peer-reviewed and publicly documented LAPACK linear algebra algorithms.

• Use the CLAPACK implementation [3] of the LAPACK software package [2].

• Track latest changes made in the LAPACK distribution addressing the latest bug reports

and feature requests.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 5

The Ponderosa Computing Linear Algebra Excel Add-ins support Microsoft Windows 7, 8, and

10. There are two Add-ins:

• PcLinAlgXLL_32.xll supports 32-bit Excel 2007 and later.

• PcLinAlgXLL_64.xll supports 64-bit Excel 2010 and later.

Each has a separate installer package available for download from Ponderosa Computing.

This document describes version 1.3 of the Ponderosa Computing Linear Algebra Excel Add-ins.

https://www.ponderosacomputing.com/

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 6

2 Notation, Implementation, and Numerical Precision

2.1 Linear Algebra Notation

The Ponderosa Computing Linear Algebra Excel Add-ins interpret Microsoft Excel spreadsheet

arrays as linear algebra matrices or vectors.

A linear algebra matrix is a two-dimensional rectangular array of elements consisting of

numbers, symbols, or expressions arranged in rows and columns. A matrix of m rows and n

columns consists of elements 𝑥𝑖𝑗, where i is the row location and j is the column location of the

element:

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] .

Numerical linear algebra operations are defined for matrices and vectors with all elements

defined on the domain of complex numbers ℂ. Given that Microsoft Excel does not natively

support complex numbers, we further restrict our consideration to matrices and vectors with all

elements defined on the domain of real numbers ℝ = (-∞, +∞).

A two-dimensional Excel spreadsheet array consisting of multiple rows and columns of adjacent

cells can naturally be interpreted as a matrix and can be used as a matrix argument or return

value by Ponderosa Computing Linear Algebra Excel Add-in worksheet functions.

The transpose operation 𝒀 = 𝑿𝑻 on an m x n matrix X creates an n x m matrix Y with rows and

columns interchanged:

𝒀 = 𝑿𝑻 = [

𝑦11 𝑦12 ⋯ 𝑦1𝑚

𝑦21 𝑦22 ⋯ 𝑦2𝑚

⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 ⋯ 𝑦𝑛𝑚

] , 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖𝑗 = 𝑥𝑗𝑖 .

A linear algebra row vector is a 1 x m matrix, consisting of a single row of m elements:

𝒙 = [𝑥1 𝑥2 … 𝑥𝑚] .

An Excel spreadsheet array consisting of a single row of adjacent cells can naturally be

interpreted as a row vector and can be used as a row vector argument or return value by

Ponderosa Computing Linear Algebra Excel Add-in worksheet functions.

The transpose of a row vector is a column vector, an m x 1 matrix consisting of a single column

of m elements:

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 7

𝒙𝑇 = [𝑥1 𝑥2 … 𝑥𝑚]𝑇 = [

𝑥1

𝑥2

⋮
𝑥𝑚

] .

An Excel spreadsheet array consisting of a single column of adjacent cells can naturally be

interpreted as a column vector and can be used as a column vector argument or return value by

Ponderosa Computing Linear Algebra Excel Add-in worksheet functions.

2.2 These Add-ins Use the CLAPACK Implementation of LAPACK

LAPACK [1] is a freely-available, peer-reviewed numerical linear algebra software package that

provides routines for solving systems of simultaneous linear equations, computing least-squares

solutions of linear systems of equations, and computing eigenvalue and singular value

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur,

generalized Schur) are also provided, as are related computations such as estimating condition

numbers.

The Netlib Repository provides a cross-platform Fortran source distribution of LAPACK [2] and

a C source distributions of CLAPACK [3]. Instructions and tools for building CLAPACK on the

Windows platform are available from the University of Tennessee Innovative Computing

Laboratory [4]. The Ponderosa Computing Linear Algebra Excel Add-ins use the CLAPACK

implementation of the LAPACK software package.

2.3 The Add-in Computations use IEEE 754 Double Precision Format

The numerical linear algebra computations are all defined for matrix and vector elements defined

on the domain of real numbers ℝ = (-∞, +∞). To describe limiting behavior of linear algebra

computations it can be useful to define them for matrix and vector elements defined on the

domain of the affinely extended real numbers [-∞, +∞], which adds the elements +∞ (positive

infinity) and -∞ (negative infinity) to the real numbers.

The Ponderosa Computing Linear Algebra Excel Add-ins implement their worksheet array

functions using the double precision format defined by the IEEE Standard 754 for Binary

Floating-Point Arithmetic [5]. This format includes representations of signed zeros and

normalized, denormalized, and nonfinite (infinite and indeterminate) floating point numbers.

2.3.1 Machine Constants

We define here some double precision constants that appear later in this document.

𝑒𝑝𝑠 : The relative machine precision, the distance from 1.0 to the next largest double-precision

number. This number is 𝑒𝑝𝑠 = dlamch_(P) = 2−52 = 2.2204460492503131𝑒 − 016.

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 : The minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛 does not overflow.

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 = dlamch_(S) = 2.2250738585072014𝑒 − 308.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 8

2.3.2 Worksheet Functions Do Not Support Nonfinite Matrix Elements

The CLAPACK implementation does not reliably handle nonfinite matrix or vector elements.

For example, some computational loops are skipped when a factor is zero under the assumption

that the skipped loop would have no impact on the computed results [7]. But this may fail to

propagate nonfinite values or fail to detect invalid operations.

Microsoft Excel does not support nonfinite floating point matrix or vector elements [6] so the

Ponderosa Computing Linear Algebra Excel Add-in worksheet functions will not encounter

matrix or vector arguments containing nonfinite floating point elements.

2.3.3 Worksheet Function Finite Return Values May be Modified by Excel

Microsoft Excel does not support IEEE 754 denormalized numbers. As an example, for the

matrix

𝑨 = [
1𝐸 − 154 0

0 1𝐸 − 154
] ,

the Ponderosa Computing Linear Algebra Excel Add-in worksheet function LA.DET() returns

the denormalized value 1.000000000000e-308#DEN to Excel. Excel then truncates this

denormalized value to 0.0.

Both Microsoft Excel and the Ponderosa Computing Linear Algebra Excel Add-ins internally

support normalized IEEE 754 double precision numbers with 53 binary digits of precision

(equivalent to nearly 16 decimal digits of precision). However, Excel displays at most 15

decimal digits of precision in numeric values [6].

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 9

3 Worksheet Functions

The Ponderosa Computing Linear Algebra Excel Add-ins implement most of their worksheet

functions using version 3.2.1 of CLAPACK [3]. This implementation of CLAPACK was

machine translated by Netlib from Fortran 77 to ANSI C using the f2c tool and version 3.2.1 of

LAPACK [2]. The Ponderosa Computing Linear Algebra Excel Add-ins use the reference BLAS

library included with this CLAPACK distribution.

3.1 Matrix Creation and Extraction

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet

functions for creating matrices and extracting the diagonals of a matrix:

Create a constant matrix LA.GEN.CON, LA.RGN.CON

Create a random matrix LA.GEN.RAN, LA.RGN.RAN

Create an identity matrix LA.GEN.IDN

Create a diagonal matrix LA.GEN.DIAG

Extract diagonal elements LA.XDIAG.C, LA.XDIAG.R

3.1.1 Create a Constant Matrix

The worksheet function LA.GEN.CON(m, n, value) returns an m x n matrix with entries all

equal to value. If m < 1 or n < 1 then this worksheet function returns the #VALUE! error.

The worksheet function LA.RNG.CON(value) returns a region-filling matrix with entries all

equal to value.

3.1.2 Create a Random Matrix

The worksheet function LA.GEN.RAN(m, n, minimum, maximum) returns an m x n matrix with

random entries in [minimum, maximum). If m < 1 or n < 1 or maximum < minimum then this

worksheet function returns the #VALUE! error.

The worksheet function LA.RNG.RAN(minimum, maximum) returns a region-filling matrix

with random entries in [minimum, maximum). If maximum < minimum then this worksheet

function returns the #NUM! error.

These worksheet functions generate uniformly distributed random elements in the interval

[minimum, maximum] using a Mersenne Twister pseudo-random generator of 32-bit numbers

with a state size of 19937 bits provided by the C++11 standard library. This generator is

initialized at library creation time, when Excel loads a Ponderosa Computing Linear Algebra

Excel Add-in.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 10

3.1.3 Create an Identity Matrix

The worksheet function LA.GEN.IDN(n) returns an n x n identity matrix, 𝑰𝒏 , of order n. If n < 1

then this worksheet function returns the #VALUE! error.

3.1.4 Create a Diagonal Matrix

The worksheet function LA.GEN.DIAG(D) returns an n x n diagonal matrix where n is the size

of the argument matrix D and the diagonal elements of the returned matrix contain the elements

of the matrix D in row-major order.

3.1.5 Extract Diagonal Elements

The worksheet functions LA.XDIAG.C(A) and LA.XDIAG.R(A) return the min(m, n) main

diagonal elements of an m x n matrix A. The worksheet function LA.XDIAG.C(A) returns the

diagonal elements as a min(m, n)-element column vector. The worksheet function

LA.XDIAG.R(A) returns the diagonal elements as a min(m, n)-element row vector.

3.2 Scalar-Valued Matrix Functions

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following scalar-valued

matrix functions:

1-norm (column norm) LA.NORM1

Infinity-norm (row norm) LA.NORMINF

Frobenius norm LA.NORMF

2-norm (spectral norm) LA.NORM2

Rank LA.RANK

Spectral radius of a symmetric matrix LA.SRAD

Trace of square matrix LA.TRACE

1-norm inverse condition number estimate of square matrix LA.ICNBR1

Infinity-norm inverse condition number estimate of square matrix LA.ICNBRINF

Determinant of square matrix LA.DET

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 11

3.2.1 1-Norm (Column Norm)

The worksheet function LA.NORM1(A) returns the 1-norm (column norm, ‖𝑨‖1) of a matrix A.

This is the maximum absolute column sum of the elements of an m x n matrix A:

 ‖𝑨‖1 = max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

This worksheet function computes the 1-norm of A using the routine dlange_() from

CLAPACK v 3.2.1.

3.2.2 Infinity-Norm (Row Norm)

The worksheet function LA.NORMINF(A) returns the infinity-norm (row norm, ‖𝑨‖∞) of a

matrix A. This is the maximum absolute row sum of the elements of an m x n matrix A:

 ‖𝑨‖∞ = max
1≤𝑖≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑗=1

This worksheet function computes the infinity-norm of A using routine dlange_() from

CLAPACK v 3.2.1.

3.2.3 Frobenius-Norm

The worksheet function LA.NORMF(A) returns the Frobenius-norm (‖𝑨‖𝐹) of a matrix A. This

is the square root of the sum of absolute squares (root mean square) of the elements of an m x n

matrix A:

 ‖𝑨‖𝐹 = √∑∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

This worksheet function computes the Frobenius norm of A using routine dlange_() from

CLAPACK v 3.2.1.

3.2.4 2-Norm (Spectral Norm)

The worksheet function LA.NORM2(A) returns the 2-norm (spectral norm, ‖𝑨‖2) of an m x n

matrix A. This is the largest singular value of A:

‖𝑨‖2 = 𝜎max (𝑨) .

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 12

This worksheet function computes the min(m, n) singular values of A using routine dgesvd_()

from CLAPACK v 3.2.1.

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find

all the singular values of A then this worksheet function returns the #NUM! error.

3.2.5 Rank

The column rank of an m x n matrix A is the maximum number of linearly independent column

vectors of A. The row rank of an m x n matrix A is the maximum number of linearly

independent row vectors of A. The column rank and the row rank are equal, and this is called the

rank of the matrix A. The rank of an m x n matrix A is also the number of nonzero singular

values of A.

The worksheet function LA.RANK(A) returns the rank of A. This function computes the min(m,

n) singular values of A using routine dgesvd_() from CLAPACK v 3.2.1. The rank is then

determined as the number of computed singular values that are significantly greater than zero.

The Ponderosa Computing Linear Algebra Excel Add-ins use the threshold value

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = max (𝑠𝑓𝑚𝑖𝑛 , max (𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ 𝜎max (𝐴)) .

A computed singular value is considered significantly greater than zero if it exceeds this

threshold. Here 𝑠𝑎𝑓𝑒𝑚𝑖𝑛 is the minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛

does not overflow, 𝑒𝑝𝑠 is the relative machine precision, and 𝜎max (𝐴) is the largest singular

value of A.

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find

all the singular values of A then this worksheet function returns the #NUM! error.

3.2.6 Spectral Radius

Let 𝜆1, 𝜆2, ... , 𝜆𝑛 be the (real) eigenvalues of an n x n symmetric (real) matrix A. Then the

spectral radius of A is:

𝜌(𝑨) = max
𝑖

(|𝜆𝑖|) .

The worksheet function LA.SRAD(A) returns the spectral radius of A. If A is not symmetric this

worksheet function returns the #VALUE! error.

This worksheet function computes the eigenvalues of A using routine dsyev_() from

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 13

QR algorithm. If this algorithm fails to find all of the eigenvalues of A in at most 30*n iterations

then this worksheet function LA.SRAD() returns the #NUM! error.

3.2.7 Trace

The worksheet function LA.TRACE(A) returns the trace of an n x n matrix A. This is the sum of

the main diagonal elements of A:

𝑡𝑟(𝑨) = ∑𝑎𝑖𝑖

𝑛

𝑖=1

This worksheet function computes the trace directly from its definition. If A is not square this

worksheet function returns the #VALUE! error.

3.2.8 1-Norm Inverse Condition Number Estimate

The worksheet function LA.ICNBR1(A) returns the inverse of a 1-norm condition number

estimate of an n x n matrix A. If A is not square this worksheet function returns the #VALUE!

error.

LA.ICNBR1(A) starts by computing ‖𝑨‖1 using routine dlange_() from CLAPACK v 3.2.1

and returns zero if ‖𝑨‖1 = 0.

LA.ICNBR1(A) then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU

factorization A = PLU using partial pivoting with row interchanges. If routine

dgetrf_()determines the matrix A is exactly singular then LA.ICNBR1(A) returns 0.

Otherwise, LA.ICNBR1(A) estimates ‖𝑨−𝟏‖
1
 using the LU factorization and routine

dgecon_() from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
1
 estimate is zero. Otherwise

LA.ICNBR1(A) returns the inverse condition number estimate

𝑐 =
1

‖𝑨‖1‖𝑨−𝟏‖1

LA.ICNBR1(A) returns the inverse of the 1-norm condition number estimate of a matrix, rather

than the condition number estimate of the matrix, itself, to provide a zero return value for

singular matrices.

3.2.9 Infinity-Norm Inverse Condition Number Estimate

The worksheet function LA.ICNBRINF(A) returns the inverse of an infinity-norm condition

number estimate of an n x n matrix A. If A is not square this worksheet function returns the

#VALUE! error.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 14

LA.ICNBRINF(A) starts by computing ‖𝑨‖∞ using routine dlange_() from CLAPACK v

3.2.1 and returns zero if ‖𝑨‖∞ = 0.

LA.ICNBRINF(A) then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU

factorization A = PLU using partial pivoting with row interchanges. If routine

dgetrf_()determines the matrix A is exactly singular then LA.ICNBRINF(A) returns 0.

Otherwise, LA.ICNBRINF(A) estimates ‖𝑨−𝟏‖
∞

 using the LU factorization and routine

dgecon_() from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
∞

 estimate is zero. Otherwise

LA.ICNBRINF(A) returns the inverse condition number estimate

𝑐 =
1

‖𝑨‖∞‖𝑨−𝟏‖∞

LA.ICNBRINF(A) returns the inverse of the infinity-norm condition number estimate of a

matrix, rather than the condition number estimate of the matrix, itself, to provide a zero return

value for singular matrices.

3.2.10 Determinant

The worksheet function LA.DET(A) returns the determinant of a square matrix A. If A is not

square this worksheet function returns the #VALUE! error.

LA.DET(A) computes the determinant of A by using routine dgetrf_() from CLAPACK v

3.2.1 to compute the LU factorization A = PLU using partial pivoting with row interchanges. If

routine dgetrf_()determines the matrix A is exactly singular then LA.DET(A) returns 0.

Otherwise, LA.DET(A) accumulates the product of the diagonal entries of U with sign

adjustment according to pivot row interchanges and scaling to avoid intermediate overflow.

3.3 Linear System Solvers

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following linear system

solvers:

Full rank square system solvers LA.SYS.SLV, LA.SYS.SLVE

General least-squares system solvers (via LQ/QR) LA.SYS.LS, LA.SYS.LSE

General least-squares system solvers (via SVD) LA.SYS.LSS, LA.SYS.LSSE

3.3.1 Full Rank Square System Solvers

The worksheet functions LA.SYS.SLV(A,B) and LA.SYS.SLVE(A,B) return the solution matrix

𝑿 to a real system of linear equations using equilibration and iterative refinement as needed:

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 15

𝑨 𝑿 = 𝑩 .

Here A is an n x n matrix and 𝑩 is a n x p matrix. The solution matrix 𝑿 is n x p. If A is not

square or if matrix 𝑩 does not have n rows these worksheet functions return the #VALUE! error.

The worksheet function LA.SYS.SLV(A,B) returns the matrix solution 𝑿 as a n x p matrix.

The worksheet function LA.SYS.SLVE(A,B) returns the matrix solution 𝑿 in the first n rows of

an (n+1) x p augmented solution matrix 𝑿𝑨. It also returns a forward error bound e for each

column of the matrix solution 𝑿 in the last row of the augmented matrix solution 𝑿𝑨.

𝑿𝑨 =

[

𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝]

 .

For each column j of the augmented solution matrix, the forward error bound estimate ej bounds

the relative error in the computed solution column 𝒙𝒋. If 𝒙𝒋 is the computed solution column and

𝒙𝒋𝒕 is the true solution column, then the relative error for that column is bounded by:

‖𝒙𝒋 − 𝒙𝒋𝒕‖∞

‖𝒙𝒋‖∞

≤ 𝑒

That is, ej is an estimated upper bound for the magnitude of the largest element in 𝒙𝒋 − 𝒙𝒋𝒕

divided by the magnitude of the largest element in 𝒙𝒋. This estimate is almost always a slight

overestimate of the true error.

These worksheet functions compute the solution matrix 𝑿 by using routine dgesvx_() from

CLAPACK v 3.2.1, using equilibration and iterative refinement as needed. If routine

dgesvx_()determines the matrix A is exactly singular then these worksheet functions return the

#NUM! error.

3.3.2 General Least-Squares System Solvers (via Orthogonal Factorizations)

The worksheet functions LA.SYS.LS(A,b) and LA.SYS.LSE(A,b) return the minimum-norm

solution vector 𝒙 to a real linear least squares problem:

𝐦𝐢𝐧
𝒙

‖𝒃 − 𝑨𝒙‖𝟐 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 .

These worksheet functions use a complete orthogonal factorization of 𝑨. Here 𝑨 is an m x n

matrix which may be rank-deficient and 𝒃 is an m-vector. The solution is the minimum-2-norm

n-vector 𝒙 achieving the minimum 2-norm residual.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 16

These worksheet functions can solve for several (p) right hand side vectors 𝒃𝒋 and solution

vectors 𝒙𝒋 in a single call. The p right hand side vectors 𝒃𝒋 are stored as the columns of a m x p

matrix 𝑩 and LA.SYS.LS(A,B) and LA.SYS.LSE(A,B) return the p solution vectors 𝒙𝒋 as the p

columns of the n x p solution matrix 𝑿. If matrix 𝑩 does not have m rows this worksheet

function returns the #VALUE! error.

These worksheet functions compute the solution matrix 𝑿 by using routine dgelsy_() from

CLAPACK v 3.2.1. This routine first computes a QR factorization of 𝑨 with column pivoting. It

then determines the effective rank r of 𝑨 and then refactors a reduced system into an r x r

triangular system which is then solved. If routine dgelsy_()determines the matrix 𝑨 has

effective rank 0 then these worksheet functions return the zero matrix.

The worksheet function LA.SYS.LS(A,B) returns the matrix solution 𝑿 as a n x p matrix.

The worksheet function LA.SYS.LSE(A,B) returns the matrix solution 𝑿 in the first n rows of an

(n+1) x p augmented solution matrix 𝑿𝑨. If the matrix 𝑨 has m ≥ n (we have an overdetermined

system) with full column rank then the worksheet function also returns a forward error bound for

each column of the matrix solution 𝑿 in the last row of the augmented matrix solution 𝑿𝑨.

Otherwise the worksheet function returns the values -1 in this last row.

The error bounds for the full column rank overdetermined case are computed in the manner

described here:

http://www.netlib.org/lapack/lug/node82.html

3.3.3 General Least-Squares System Solvers (via SVD)

The worksheet functions LA.SYS.LSS(A,b) and LA.SYS.LSSE(A,b) return the minimum-norm

solution vector 𝒙 to a real linear least squares problem:

𝐦𝐢𝐧
𝒙

‖𝒃 − 𝑨𝒙‖𝟐 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 .

These worksheet functions use the singular value decomposition of 𝑨. Here 𝑨 is an m x n matrix

which may be rank-deficient and 𝒃 is an m-vector. The solution is the minimum-2-norm n-vector

𝒙 achieving the minimum 2-norm residual.

These worksheet functions can solve for several (p) right hand side vectors 𝒃𝒋 and solution

vectors 𝒙𝒋 in a single call. The p right hand side vectors 𝒃𝒋 are stored as the columns of a m x p

matrix 𝑩 and LA.SYS.LSS(A,B) and LA.SYS.LSSE(A,B) return the p solution vectors 𝒙𝒋 as the

p columns of the n x p solution matrix 𝑿. If matrix 𝑩 does not have m rows this worksheet

function returns the #VALUE! error.

These worksheet functions compute the solution matrix 𝑿 by using routine dgelss_() from

CLAPACK v 3.2.1. This routine first computes the singular value decomposition of 𝑨. It then

determines the effective rank r of 𝑨, zeros out the insignificant portion of the SVD, and solves

http://www.netlib.org/lapack/lug/node82.html

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 17

the reduced system. If routine dgelss_()determines the matrix 𝑨 has effective rank 0 then

these worksheet functions return the zero matrix.

The worksheet function LA.SYS.LSS(A,B) returns the matrix solution 𝑿 as a n x p matrix.

The worksheet function LA.SYS.LSSE(A,B) returns the matrix solution 𝑿 in the first n rows of

an (n+1) x p augmented solution matrix 𝑿𝑨. If the matrix A has m ≥ n (we have an

overdetermined system) with full column rank then the worksheet function also returns a forward

error bound for each column of the matrix solution 𝑿 in the last row of the augmented matrix

solution 𝑿𝑨. Otherwise the worksheet function returns the values -1 in this last row.

The error bounds for the full column rank overdetermined case are computed in the manner

described here:

http://www.netlib.org/lapack/lug/node82.html

3.4 Singular Value Decomposition

The singular value decomposition of an m x n (real) matrix 𝑨 is a factorization of 𝑨 into the

form:

𝑨 = 𝑼 𝜮 𝑽𝑇

where 𝑼 is a m x m matrix, 𝑽𝑇 is an n x n matrix, and 𝜮 is a m x n rectangular diagonal matrix

with p = min(m,n) nonnegative entries on the main diagonal.

The nonnegative diagonal entries of 𝜮 are the singular values of 𝑨 , {𝜎1, 𝜎2, … 𝜎min (𝑚,𝑛)} ,

arranged in descending order: 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min (𝑚,𝑛) ≥ 0 .

The matrices 𝑼 and 𝑽 are orthonormal:

 𝑼𝑇𝑼 = 𝑼 𝑼𝑇 = 𝑰𝒎 , 𝑽𝑇𝑽 = 𝑽 𝑽𝑇 = 𝑰𝒏 ,

where 𝑰𝒎 and 𝑰𝒏 denote the identity matrices of order m and n, respectively. The m columns of

𝑼, {𝒖1, 𝒖2, …𝒖𝑚}, are called the left singular vectors of 𝑨 . The n columns of 𝑽, {𝒗1, 𝒗2, … 𝒗𝑛},
are called the right singular vectors of 𝑨 .

Since 𝜮 is a m x n rectangular diagonal matrix with p = min(m,n), the singular value

decomposition can be represented as the thin singular value decomposition:

𝑨 = 𝑼𝒑 𝜮𝒑 𝑽𝒑
𝑇 ,

Where 𝑼𝒑 is the m x p matrix consisting of the first p columns of 𝑼 , 𝜮𝒑 is the p x p upper

diagonal portion of 𝜮 , and 𝑽𝒑 is the n x p matrix consisting of the first p columns of 𝑽 . The p

columns of 𝑼𝒑 and the p columns of 𝑽𝒑 are orthonormal:

http://www.netlib.org/lapack/lug/node82.html

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 18

𝑼𝒑
𝑇𝑼𝒑 = 𝑰𝒑 , 𝑽𝒑

𝑇𝑽𝒑 = 𝑰𝒑 ,

where 𝑰𝒑 denote the identity matrix of order p.

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet

functions computing the thin singular value decomposition or parts thereof:

Singular value decomposition LA.SVD

Singular values LA.SNGVL.C, LA.SNGVL.R

Singular values with error bound LA.SNGVLE.C, LA.SNGVLE.R

Left or right singular vectors LA.LSNGVC, LA.RSNGVC

3.4.1 Singular Value Decomposition

The worksheet function LA.SVD(A) returns the p = min(m,n) singular values, their associated

left singular vectors, and their associated right singular vectors of 𝑨 in the p columns of a

(m+n+1) x p matrix 𝑺:

𝑺 =

[

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

𝑣11 𝑣21 ⋯ 𝑣𝑝1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑝𝑛]

The first row of 𝑺 contains the p singular values of 𝑨 in descending order, {𝜎1, 𝜎2, … 𝜎p} . The

columns of the next m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}. The columns

of the last n rows contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}.

The worksheet function LA.SVD(A) computes the singular value decomposition of 𝑨 using

routine dgesvd_() from CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to

compute the singular values and singular vectors of an (upper or lower) bidiagonal matrix using

the implicit zero-shift QR algorithm. If this algorithm fails to find all the singular values of 𝑨

then this worksheet function returns the #NUM! error.

3.4.2 Singular Values

The worksheet functions LA.SNGVL.C(A) and LA.SNGVL.R(A) return the singular values of a

m x n matrix 𝑨 in descending order. The worksheet function LA.SNGVL.C(A) returns the p =

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 19

min(m,n) singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order as an p-element column vector

𝒔:

𝒔 = [

𝜎1

𝜎2

⋮
𝜎p

] .

The worksheet function LA.SNGVL.R(A) returns the singular values as an p-element row

vector.

These worksheet functions compute the singular values of 𝑨 using routine dgesvd_() from

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular

values of an (upper or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this

algorithm fails to find all the singular values of 𝑨 then these worksheet functions return the

#NUM! error.

3.4.3 Singular Values With Error Bound

Let 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min (𝑚,𝑛) ≥ 0 be the p = min(m,n) singular values of an m x n matrix A.

The worksheet functions LA.SNGVLE.C(A) and LA.SNGVLE.R(A) return the singular values

of a m x n matrix 𝑨 in descending order followed by a computation error bound. The worksheet

function LA.SNGVLE.C(A) returns the p = min(m,n) singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in

descending order by a forward error bound estimate e as an (p+1)-element column vector sA:

𝒔𝑨 =

[

𝜎1

𝜎2

⋮
𝜎p

𝑒]

 .

The worksheet function LA.SNGVLE.R(A) returns the singular values and forward error bound

as an (p+1)-element row vector.

The forward error bound estimate e bounds the absolute error in the computed singular values. If

𝜎𝑖 is the i-th computed singular value and 𝜎𝑖𝑡 is the i-th true singular value, then the absolute

error in 𝜎𝑖 is bounded by:

|𝜎𝑖 − 𝜎𝑖𝑡| ≤ 𝑒

This estimate is almost always a slight overestimate of the true error.

These worksheet functions compute the singular values of 𝑨 using routine dgesvd_() from

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular

values of an (upper or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 20

algorithm fails to find all the singular values of 𝑨 then these worksheet functions return the

#NUM! error.

The singular values forward error bound e is:

𝑒 = max(𝑠𝑓𝑚𝑖𝑛 ,max(𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ σ1) .

This error bound is described here: http://www.netlib.org/lapack/lug/node97.html, but this

methods uses p(m,n) = max(m,n) in place of p(m,n) = 1 as the "modestly growing function of n"

and uses machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is

similar to that found in the example program: http://www.nag.com/lapack-ex/node128.html .

3.4.4 Left Singular Vectors

The worksheet function LA.LSNGVC(A) returns the p = min(m,n) singular values and first p left

singular vectors of a m x n matrix 𝑨 in the p columns of a (m+1) x p matrix 𝑺:

𝑺 = [

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

]

The first row of 𝑺 contains the p singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order. The

columns of the remaining m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}.

The worksheet function LA.LSNGVC(A) computes the singular value decomposition of 𝑨 using

routine dgesvd_() from CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to

compute the singular values and singular vectors of an (upper or lower) bidiagonal matrix using

the implicit zero-shift QR algorithm. If this algorithm fails to find all the singular values of 𝑨

then this worksheet function returns the #NUM! error.

3.4.5 Right Singular Vectors

The worksheet function LA.RSNGVC(A) returns the p = min(m,n) singular values and first p

right singular vectors of a m x n matrix 𝑨 in the p rows of a p x (n+1) matrix 𝑺:

𝑺 = [

𝜎1 𝑣11 𝑣12 ⋯ 𝑣1𝑛

𝜎2 𝑣21 𝑣22 ⋯ 𝑣2𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝜎𝑝 𝑣𝑝1 𝑣𝑝2 ⋯ 𝑣𝑝𝑛

]

The first column of 𝑺 contains the p singular values of 𝑨 in descending order. The rows of the

remaining n columns of 𝑺 contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}.

http://www.netlib.org/lapack/lug/node97.html
http://www.nag.com/lapack-ex/node128.html

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 21

The worksheet function LA.RSNGVC(A) computes the singular value decomposition of 𝑨 using

routine dgesvd_() from CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to

compute the singular values and singular vectors of an (upper or lower) bidiagonal matrix using

the implicit zero-shift QR algorithm. If this algorithm fails to find all the singular values of 𝑨

then this worksheet function returns the #NUM! error.

3.5 Eigenvalues and Eigenvectors

A right eigenvector of an n x n symmetric (real) matrix 𝑨 is a nonzero n-vector 𝒗 such that the

matrix product:

𝑨𝒗 = 𝜆𝒗 .

Here λ is a real number (scalar) called the eigenvalue of 𝑨 corresponding to the right eigenvector

𝒗. The set of all eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}, each paired with its corresponding eigenvalue,

{𝜆1, 𝜆2, … 𝜆𝑛}, is called the eigensystem of the matrix 𝑨. It can be expressed as:

𝑨 𝑽 = 𝑽 𝜦.

Here 𝜦 is a n x n diagonal matrix with diagonal entries {𝜆1, 𝜆2, … 𝜆𝑛} and 𝑽 is a n x n matrix with

columns {𝒗1, 𝒗2, … 𝒗𝑛}.

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet

functions computing the eigenvalues and right eigenvectors:

Eigenvalues LA.EGNVL.C, LA.EGNVL.R

Eigenvalues with error bound LA.EGNVLE.C, LA.EGNVLE.R

Eigenvalues and right eigenvectors LA.REGNVC

3.5.1 Eigenvalues

The worksheet functions LA.EGNVL.C(A) and LA.EGNVL.R(A) return the (real) eigenvalues

of an n x n symmetric (real) matrix 𝑨. The worksheet function LA.EGNVL.C(A) returns the

eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, as an n-element column

vector 𝛌:

𝛌 = [

𝜆1

𝜆2

⋮
𝜆n

] .

The worksheet function LA.EGNVL.R(A) returns the eigenvalues of 𝑨 as an n-element row

vector. If 𝑨 is not symmetric these worksheet functions return the #NUM! error.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 22

These worksheet functions compute the eigenvalues of 𝑨 using routine dsyev_() from

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or

QR algorithm. If this algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations

then these worksheet functions return the #NUM! error.

3.5.2 Eigenvalues with Error Bounds

The worksheet functions LA.EGNVLE.C(A) and LA.EGNVLE.R(A) return the (real)

eigenvalues of an n x n symmetric (real) matrix 𝑨 followed by a forward error bound e. The

worksheet function LA.EGNVLE.C(A) returns the eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending

order, 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, followed by a forward error bound estimate e as an (n+1)-element

column vector 𝛌𝑨:

𝛌𝑨 =

[

𝜆1

𝜆2

⋮
𝜆n

𝑒]

 .

The worksheet function LA.EGNVLE.R(A) returns the eigenvalues and error bound as an (n+1)-

element row vector. If 𝑨 is not symmetric these worksheet functions return the #NUM! error.

The forward error bound estimate e bounds the absolute error in the computed eigenvalues. If 𝜆𝑖

is the i-th computed eigenvalue and 𝜆𝑖𝑡 is the i-th true eigenvalue, then the absolute error in 𝜆𝑖 is

bounded by:

|𝜆𝑖 − 𝜆𝑖𝑡| ≤ 𝑒

This estimate is almost always a slight overestimate of the true error.

These worksheet functions compute the eigenvalues of 𝑨 using routine dsyev_() from

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or

QR algorithm. If this algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations

then these worksheet functions return the #NUM! error.

The Ponderosa Computing Linear Algebra Excel Add-ins use the eigenvalues error bound e is:

𝑒 = max (𝑠𝑓𝑚𝑖𝑛 , 𝑛 ∗ 𝑒𝑝𝑠 ∗ max
𝑖

(|𝜆𝑖|)) .

This error bound is described here: http://www.netlib.org/lapack/lug/node90.html, but this

method uses p(n) = n in place of p(n) = 1 as the "modestly growing function of n" and uses

machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is similar to that

found in the example program: http://www.nag.com/lapack-ex/node71.html.

http://www.netlib.org/lapack/lug/node90.html
http://www.nag.com/lapack-ex/node71.html

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 23

3.5.3 Eigenvalues and Right Eigenvectors

The worksheet function LA.REGNVC(A) returns the eigenvalues and right eigenvectors of an n

x n symmetric matrix A in the n columns of the (n+1) x n matrix matrix 𝑽𝑨.

𝑽𝑨 = [

𝜆1 𝜆2 ⋯ 𝜆𝑛

𝑣11 𝑣21 ⋯ 𝑣𝑛1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑛𝑛

]

The first row of 𝑽𝑨 contains the n eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 𝜆1 ≤ 𝜆2 ≤
⋯ ≤ 𝜆n. The columns of the remaining n rows of 𝑽𝑨 contain the corresponding n right

eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}. If 𝑨 is not symmetric this worksheet function returns the

#NUM! error.

This worksheet function computes the eigenvalues of 𝑨 using routine dsyev_() from

CLAPACK v 3.2.1. Routine dsyev_() uses routine dsterf_() which computes all

eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or

QR algorithm. If this algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations

then this worksheet function returns the #NUM! error.

3.6 Cholesky Factorization

The upper triangular Cholesky factorization (or decomposition) of an n x n symmetric

positive definite matrix A is the unique factorization of 𝑨 into

𝑨 = 𝑼𝑇𝑼

where 𝑼 is an n x n upper triangular matrix with positive entries on the diagonal.

The lower triangular Cholesky factorization (or decomposition) of an n x n symmetric

positive definite matrix A is the unique factorization of 𝑨 into

𝑨 = 𝑳 𝑳𝑇

where 𝑳 is an n x n lower triangular matrix with positive entries on the diagonal.

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet

functions computing the Cholesky factorizations of a symmetric positive definite matrix:

Upper Cholesky factorization LA.CHOL.U

Lower Cholesky factorization LA.CHOL.L

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 24

3.6.1 Upper and Lower Cholesky Factorizations

The worksheet function LA.CHOL.U(A) returns the upper triangular Cholesky factorization of

an n x n symmetric positive definite matrix 𝑨 as an n x n upper triangular matrix 𝑼 with positive

entries on the diagonal.

The worksheet function LA.CHOL.L(A) returns the lower triangular Cholesky factorization of

an n x n symmetric positive definite matrix 𝑨 as an n x n lower triangular matrix 𝑳 with positive

entries on the diagonal.

These worksheet functions compute the Cholesky factorization of 𝑨 using routine dpotrf_()

from CLAPACK v 3.2.1. If this algorithm determines the matrix 𝑨 is not positive definite then

these worksheet functions return the #NUM! error.

3.7 Alternative Matrix Multiplication and Transformation Operations

The Ponderosa Computing Linear Algebra Excel Add-ins provide the following worksheet

functions serving as alternatives to the built-in Excel matrix multiplication and transpose array

functions:

Matrix multiplication LA.MUL

Matrix transpose multiplication LA.TMUL, LA.MULT

Matrix transpose LA.TRN

3.7.1 Matrix Multiplication

The worksheet function LA.MUL(A,B) returns the product of two matrices. The matrix 𝑨 must

be m x n and the matrix B must be n x p with m, n, p > 0. Otherwise this worksheet function

returns the #VALUE! error.

This worksheet function computes the matrix product using routine dgemm_() from the

CLAPACK v 3.2.1 BLAS package. LA.MUL(A,B) is an alternative to the Excel MMULT(A,B)

built-in function.

3.7.2 Matrix Transpose Multiplication

The worksheet function LA.TMUL(A,B) returns the product of the transpose of the first matrix

A times the second matrix B. The matrix A must be n x m and the matrix B must be n x p with

m, n, p > 0. Otherwise this worksheet function returns the #VALUE! error.

The worksheet function LA.MULT(A,B) returns the product of the first matrix A times the

transpose of the second matrix B. The matrix A must be m x n and the matrix B must be p x n

with m, n, p > 0. Otherwise this worksheet function returns the #VALUE! error.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 25

These worksheet functions compute the matrix product using routine dgemm_() from the

CLAPACK v 3.2.1 BLAS package.

3.7.3 Matrix Transpose

The worksheet function LA.TRN(A) returns the transpose of an m x n matrix A. Both m and n

must be positive or this worksheet function returns the #VALUE! error. This worksheet function

is an alternative to the Excel TRANSPOSE(A) built-in function.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 26

4 Installing and Activating these Excel Add-ins

There are three steps to enabling a Ponderosa Computing Linear Algebra Excel Add-in to be

used in Excel spreadsheets. These are (1) installing the Add-in on your computer, (2) registering

the Add-in with Excel, and (3) activating the Add-in in Excel. Here we describe these steps for

the 32-bit Excel Add-in PcLinAlgXLL_32.xll. The steps for the 64-bit Excel Add-in

PcLinAlgXLL_64.xll are similiar.

Installing the 32-bit Excel Add-In on your Computer

1. Go to the Ponderosa Computing downloads page

http://www.ponderosacomputing.com/downloads/ and identify the installation package

for the Ponderosa Computing Linear Algebra Excel Add-in.

2. Click on the link to the Excel Add-in installation package. In the Opening dialog box that

appears click Save File, and save the installation package at a convenient location on

your computer.

3. On your computer navigate to the location of the saved installation package and double-

click on the file.

4. In the Open File – Security Warning dialog you can click on the Publisher link to verify

the Digital Signature. Then click Run.

5. The installation program will guide you through the rest of the process of installing the

Excel Add-in on your computer.

• A per-machine installation will install the 32-bit Excel Add-in

PcLinAlgXLL_32.xll by default in C:\Program Files (x86)\Ponderosa

Computing\PcLinAlgXLL_32.

• A per-user installation will install the 32-bit Excel Add-in PcLinAlgXLL_32.xll

by default in C:\Users\USER\AppData\Local\Programs\Ponderosa

Computing\PcLinAlgXLL_32.

6. You may delete the downloaded installation package.

Registering and Activating the Excel Add-In in Excel

1. Open a 32-bit version of Microsoft Excel.

2. Click the File tab, click Options, and then click the Add-Ins category.

3. In the Manage box, select Excel Add-ins, and then click Go.

4. The Add-Ins dialog box appears. Click Browse, locate the Excel Add-in in its

installation directory (see above), select it, and click OK.

5. The Excel Add-in has now been registered with Excel. The Add-Ins dialog box reappears

and now contains a checked entry for the Add-in. If you uncheck the entry for the Add-in

and click OK, or if you click Cancel the Add-in will remain registered, but not activated.

If you leave the entry checked and click OK the Add-in will also be activated and a

confirmation message will appear.

Activating a Registered Excel Add-In in Excel

http://www.ponderosacomputing.com/downloads/

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 27

If the Excel Add-in has been registered with, but not activated in Excel, then follow these steps

to activate the Add-in so it is accessible from Excel worksheets:

1. Open Excel (if not already open).

2. Click the File tab, click Options, and then click the Add-Ins category.

3. In the Manage box, click Excel Add-ins, and then click Go.

4. The Add-Ins dialog box appears. Select the check box next to the Add-in you want to

activate, and click OK.

5. A confirmation message will appear. Dismiss it.

The Excel Add-in is now loaded into Excel.

The activated Excel Add-in will be loaded into Excel whenever Excel is started until it is

inactivated. Also, the Excel Add-in command menu will appear in the Menu Commands section

of the Add-Ins tab on the Ribbon.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 28

5 Inactivating and Uninstalling these Excel Add-ins

Should you decide to inactivate, unregister, uninstall, or remove a Ponderosa Computing Linear

Algebra Excel Add-in from Excel or your computer, you can do so by following these

instructions.

Inactivating the Excel Add-In

If an activated Excel Add-in is inactivated, it will remain registered with Excel, but not loaded

when Excel starts. Follow these steps to inactivate the Excel Add-in:

1. Open Excel (if not already open).

2. Click the File tab, click Options, and then click the Add-Ins category.

3. In the Manage box, click Excel Add-ins, and then click Go.

4. In the Add-Ins dialog box clear the check box next to the Add-in that you want to

inactivate and then click OK.

5. A confirmation message will appear. Dismiss it.

The command menu for an inactivated Excel Add-in will not appear in the Menu Commands

section of the Add-Ins tab on the Ribbon. You can reactivate a registered Excel Add-in using the

instructions above.

Unregistering the Excel Add-In from Excel

Inactivating the Excel Add-in does not unregister it from Excel. To unregister the Add-in from

Excel you must first uninstall the Add-in from your computer and then remove it from Excel.

These steps are described next.

Uninstalling the Excel Add-In from your Computer

Inactivating the Excel Add-in does not remove it from your computer. To remove the Add-in

from your computer, you must uninstall it.

1. Exit Excel (click the File tab, and then click Exit).

2. Open the Control Panel (in Windows 10 open Settings in the Start Menu and select

Apps).

3. In the Control Panel, click Programs and Uninstall a program.

4. Click the name of the Excel Add-in in the list of installed programs, and then click the

Uninstall button.

5. The Windows Installer dialog will appear. Click Yes.

6. The installation program will guide you through the rest of the process of uninstalling the

Excel Add-in from your computer.

Removing an Uninstalled Add-In from Excel

1. Open Excel.

2. Click the File tab, click Options, and then click the Add-Ins category.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 29

3. In the Manage box, click Excel Add-ins, and then click Go.

4. The Add-Ins dialog box appears. Select the check box next to the Add-in you want to

unregister.

5. Excel will advise you that it cannot find the Add-in and ask you whether to delete it from

the list. Click Yes.

6. The Add-in will be removed from the list of available Add-ins.

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 30

6 References

[1] Anderson, E. et al., LAPACK Users’ Guide, Third Edition (Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1999) ISBN 0-89871-447-8.

[2] LAPACK on the Netlib Repository at UTK and ORNL. http://www.netlib.org/lapack/

[3] CLAPACK (f2c'ed version of LAPACK) version 3.2.1 on the Netlib Repository at UTK and

ORNL. http://www.netlib.org/clapack/. See clapack-3.2.1-CMAKE.tgz.

[4] CLAPACK for Windows at the University of Tennessee Innovative Computing Laboratory.

http://icl.cs.utk.edu/lapack-for-windows/clapack/

[5] Wikipedia: IEEE floating point. This discussion includes references to the standard

publications.

[6] Microsoft. “Floating-point arithmetic may give inaccurate results in Excel.” link

[7] LAPACK/ScaLAPACK Development Forum. http://icl.cs.utk.edu/lapack-forum/

http://www.netlib.org/lapack/
http://www.netlib.org/clapack/
http://icl.cs.utk.edu/lapack-for-windows/clapack/
http://en.wikipedia.org/wiki/IEEE_floating_point
http://support.microsoft.com/kb/78113/en-us
http://icl.cs.utk.edu/lapack-forum/

Ponderosa Computing Linear Algebra Excel Add-ins

 Copyright © 2020 Paul J. McClellan. All rights reserved. 31

7 License Notice

The Ponderosa Computing Linear Algebra Excel Add-ins were built using the CLAPACK

implementation of LAPACK, a freely-available software package from netlib at

http://www.netlib.org/lapack. The license used for the LAPACK software is the modified BSD

license:

Copyright (c) 1992-2013 The University of Tennessee and The University

 of Tennessee Research Foundation. All rights

 reserved.

Copyright (c) 2000-2013 The University of California Berkeley. All

 rights reserved.

Copyright (c) 2006-2013 The University of Colorado Denver. All rights

 reserved.

$COPYRIGHT$

Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

- Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer listed

 in this license in the documentation and/or other materials

 provided with the distribution.

- Neither the name of the copyright holders nor the names of its

 contributors may be used to endorse or promote products derived from

 this software without specific prior written permission.

The copyright holders provide no reassurances that the source code

provided does not infringe any patent, copyright, or any other

intellectual property rights of third parties. The copyright holders

disclaim any liability to any recipient for claims brought against

recipient by any third party for infringement of that parties

intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.netlib.org/lapack/#_licensing
http://www.netlib.org/lapack
http://www.netlib.org/lapack/LICENSE.txt
http://www.netlib.org/lapack/LICENSE.txt

