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1 Ponderosa Computing Linear Algebra .NET Class Library 

The C# programming language and .NET Framework provide one- and two-dimensional array 

data types that are well suited to representing linear algebra vectors and matrices. The Ponderosa 

Computing Linear Algebra .NET class library, PonderosaComputing.LinearAlgebra.dll, 

provides linear algebra vector/matrix metrics and operations using one-dimensional and two-

dimensional, double-precision .NET array objects to represent column vectors and matrices, 

respectively. These metrics and operations are implemented as LinearAlgebra class methods 

using LAPACK algorithms. 

LAPACK [1,2] is a freely-available, peer-reviewed computational linear algebra software library 

that provides routines for solving systems of simultaneous linear equations, computing least-

squares solutions of linear systems of equations, and computing eigenvalue and singular value 

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur, 

generalized Schur) are also provided, as are related computations such as estimating condition 

numbers. LAPACK has been used in or as a starting point for implementation of linear algebra 

computing environments and is a standard by which other libraries and computing environments 

are often compared. 

The Ponderosa Computing Linear Algebra .NET class library provides selected LAPACK linear 

algebra computations using the public-domain CLAPACK library from the Netlib Repository 

[3,4]. The CLAPACK library is a machine-translation of the LAPACK Fortran library to C code. 

The LinearAlgebra class methods are implemented using C++ Interop in C++/CLI to wrap the 

CLAPACK functions so they can be accessed by code that is authored in C# or another .NET 

Framework language [5]. 

This document describes version 1.2 of the Ponderosa Computing Linear Algebra .NET class 

library. It was built using the Microsoft .NET Framework 4.5.2. 
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2 How to Use this Class Library 

We illustrate here how to use the Ponderosa Computing Linear Algebra .NET class library in a 

C# project using Microsoft Visual Studio 2012. 

The Ponderosa Computing Linear Algebra .NET class library installer installs by default the 

class library DLL, PonderosaComputing.LinearAlgebra.dll, in the folder C:\Program Files 

(x86)\Ponderosa Computing\LinearAlgebra.NET. If needed, the installer will also attempt to 

install the .NET Framework 4.5.2 from the web. 

To use the class methods of this class library first add a reference to the library in your Visual 

Studio C# project: 

1. In Visual Studio click the menu item “Project” and “Add Reference…”. 

2. Click the “Browse…” button on the lower right and locate the file 

PonderosaComputing.LinearAlgebra.dll. By default the installer installs this file in 

C:\Program Files (x86)\Ponderosa Computing\LinearAlgebra.NET. 

3. Click on the file name and click the “Add” button on the lower right of the file dialog. 

4. Click the “OK” button. 

Then create a PonderosaComputing.LinearAlgebra class instance and call the desired class 

method through this instance. LinearAlgebraExceptions can also be caught. 

Here is example C# code using this library: 

using System; 

using PonderosaComputing; 

 

namespace PcLinAlgCLTest 

{ 

    class Program 

    { 

        static void WriteVector(double[] Vec) 

        { 

            for (int i = 0; i < Vec.GetLength(0); ++i) 

            { 

                Console.Write("{0}  ", Vec[i]); 

            } 

            Console.WriteLine(); 

            Console.WriteLine(); 

        } 

 

        static void WriteMatrix(double[,] Mat) 

        { 

            for (int i = 0; i < Mat.GetLength(0); ++i) 

            { 

                for (int j = 0; j < Mat.GetLength(1); ++j) 

                { 

                    Console.Write("{0}  ", Mat[i, j]); 

                } 

                Console.WriteLine(); 
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            } 

            Console.WriteLine(); 

        } 

 

        static void Main(string[] args) 

        { 

            LinearAlgebra la = new LinearAlgebra(); 

 

            // Exception thrown 

            double[,] MS = {{1,2,4},{1,2,4},{1,2,4}}; 

            double[] v = {1,2,3}; 

            try 

            { 

                Console.WriteLine("*** Test error handling ***"); 

                Console.WriteLine(""); 

 

                Console.WriteLine("Singular matrix M"); 

                WriteMatrix(MS); 

                Console.WriteLine("rank = {0}", la.Rank(MS)); 

                Console.WriteLine("determinant = {0}", la.Determinant(MS)); 

                Console.WriteLine(); 

 

                Console.WriteLine("vector v"); 

                WriteVector(v); 

 

                Console.WriteLine("Matrix-vector product u = M * v"); 

                double[] u = la.Multiply(MS, v); 

                WriteVector(u); 

 

                Console.WriteLine("Try to solve M * x = u for x"); 

                Console.WriteLine("(Expect exception)"); 

                Console.WriteLine(); 

                double[] x = la.SolveFullRankLinearSystem(MS, u); 

                Console.WriteLine("Expected not to reach here!"); 

                WriteVector(x); 

            } 

            catch (LinearAlgebraException e) 

            { 

                Console.WriteLine("Exception caught: {0}", e.Message); 

            } 

            finally 

            { 

                Console.WriteLine(); 

            } 

 

            // metrics 

            double[,] M33 = {{1,2,3},{1,4,9},{1,8,27}}; 

            double[,] M43 = {{1,2,3},{1,4,9},{1,8,27},{1,16,81}}; 

            try 

            { 

                Console.WriteLine("*** Solve full rank square system  ***"); 

                Console.WriteLine(""); 

 

                Console.WriteLine("Full rank matrix M:"); 

                WriteMatrix(M33); 

                Console.WriteLine("rank = {0}", la.Rank(M33)); 

                Console.WriteLine("determinant = {0}", la.Determinant(M33)); 
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                Console.WriteLine(); 

 

                Console.WriteLine("vector v"); 

                WriteVector(v); 

 

                Console.WriteLine("Matrix-vector product u = M * v"); 

                double[] u = la.Multiply(M33, v); 

                WriteVector(u); 

 

                Console.WriteLine("Solve M * x = u for x"); 

                double[] x = la.SolveFullRankLinearSystem(M33, u); 

                WriteVector(x); 

 

                Console.WriteLine("*** Solve overdetermined system  ***"); 

                Console.WriteLine(""); 

 

                Console.WriteLine("matrix H:"); 

                WriteMatrix(M43); 

                Console.WriteLine("rank = {0}", la.Rank(M43)); 

                Console.WriteLine(""); 

 

                Console.WriteLine("Matrix-vector product w = H * v"); 

                double[] w = la.Multiply(M43, v); 

                WriteVector(w); 

 

                Console.WriteLine("Solve H * y = w for y with error bound:"); 

                double[] ye = la.SolveLsqLinearSystemEB(M43, w); 

                WriteVector(ye); 

            } 

            catch (LinearAlgebraException e) 

            { 

                Console.WriteLine("Exception caught: {0}", e.Message); 

            } 

            finally 

            { 

                Console.WriteLine(); 

            } 

 

            Console.ReadLine(); 

        } 

    } 

} 
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3 Notation, Implementation, and Numerical Precision 

3.1 Linear Algebra Notation 

A linear algebra column vector is a one-dimensional array of elements consisting of numbers, 

symbols, or expressions arranged in a column. A column vector of m elements consists of 

elements 𝑥𝑖, where i is the row location of the element: 

𝒙 =  [

𝑥1

𝑥2

⋮
𝑥𝑚

]  . 

The Ponderosa Computing Linear Algebra .NET class library uses double-precision one-

dimensional .NET arrays to represent column vectors. A column vector can also be represented 

by a double-precision two-dimensional .NET array object having one column. 

A linear algebra row vector is a one-dimensional array of elements consisting of numbers, 

symbols, or expressions arranged in a row. A row vector of n elements consists of elements 𝑦𝑖, 

where i is the column location of the element: 

𝒚 = [𝑦1 𝑦2 … 𝑦𝑛]  . 

This class library uses double-precision two-dimensional .NET arrays with one row to represent 

row vectors. 

A linear algebra matrix is a two-dimensional rectangular array of elements consisting of 

numbers, symbols, or expressions arranged in rows and columns. A matrix of m rows and n 

columns consists of elements 𝑥𝑖𝑗, where i is the row location and j is the column location of the 

element: 

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] . 

This class library uses double-precision two-dimensional .NET arrays to represent matrices. 

The transpose operation 𝒀 = 𝑿𝑻 on an m x n matrix X creates an n x m matrix Y with rows and 

columns interchanged: 

𝒀 = 𝑿𝑻 = [

𝑦11 𝑦12 ⋯ 𝑦1𝑚

𝑦21 𝑦22 ⋯ 𝑦2𝑚

⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 ⋯ 𝑦𝑛𝑚

] ,  𝑤ℎ𝑒𝑟𝑒 𝑦𝑖𝑗 = 𝑥𝑗𝑖 . 
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The transpose operation 𝒚 = 𝒙𝑻 on an m-element column vector 𝒙 creates an m-element row 

vector: 

𝒙𝑇 = [

𝑥1

𝑥2

⋮
𝑥𝑚

]

𝑇

= [𝑥1 𝑥2 … 𝑥𝑚] . 

This class library will return the transpose of a column vector as a row vector represented by a 

double-precision two-dimensional .NET array with one row. 

Numerical linear algebra operations are defined for matrices and vectors with all elements 

defined on the domain of complex numbers ℂ. The Ponderosa Computing Linear Algebra .NET 

class library provides linear algebra vector/matrix metrics and operations using double-precision 

one-dimensional and two-dimensional .NET array objects to represent vector and matrix 

arguments and return values. Since these array objects are declared as double-precision the 

elements of these vectors and matrices are defined on the domain of real numbers ℝ = (-∞, +∞). 

3.2 Library Uses the CLAPACK Implementation of LAPACK 

LAPACK [1] is a freely-available, peer-reviewed numerical linear algebra software package that 

provides routines for solving systems of simultaneous linear equations, computing least-squares 

solutions of linear systems of equations, and computing eigenvalue and singular value 

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur, 

generalized Schur) are also provided, as are related computations such as estimating condition 

numbers. 

The Netlib Repository provides a cross-platform Fortran source distribution of LAPACK [2] and 

a C source distributions of CLAPACK [3]. Instructions and tools for building CLAPACK on the 

Windows platform are available from the University of Tennessee Innovative Computing 

Laboratory [4]. The Ponderosa Computing Linear Algebra .NET class library uses the 

CLAPACK implementation of the LAPACK software package. 

3.3 Library Computations use IEEE 754 Double Precision Format 

The numerical linear algebra computations are all defined for matrix and vector elements defined 

on the domain of real numbers ℝ = (-∞, +∞). To describe limiting behavior of linear algebra 

computations it can be useful to define them for matrix and vector elements defined on the 

domain of the affinely extended real numbers [-∞, +∞], which adds the elements +∞ (positive 

infinity) and -∞ (negative infinity) to the real numbers. 

The Ponderosa Computing Linear Algebra .NET class library implements its functions using the 

double precision format defined by the IEEE Standard 754 for Binary Floating-Point Arithmetic 

[6]. This format includes representations of signed zeros and normalized, denormalized, and 

nonfinite (infinite and indeterminate) floating point numbers. 
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3.3.1 Machine Constants 

We define here some double precision constants that appear later in this document. 

𝑒𝑝𝑠 : The relative machine precision, the distance from 1.0 to the next largest double-precision 

number. This number is 𝑒𝑝𝑠 =  dlamch_(P) =  2−52 =  2.2204460492503131𝑒 − 016. 

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 : The minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛 does not overflow. 

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 =  dlamch_(S) = 2.2250738585072014𝑒 − 308. 

3.3.2 Normalized and Denormalized Numbers 

The Ponderosa Computing Linear Algebra .NET class library supports normalized IEEE 754 

double precision numbers with 53 binary digits of precision (equivalent to nearly 16 decimal 

digits of precision). 

The library also supports IEEE 754 denormalized numbers. As an example, for the matrix 

𝑨 =  [
1𝐸 − 160 0

0 1𝐸 − 160
] , 

the class method LinearAlgebra.Determinant() returns the denormalized value 

9.99988867182683E-321. 

3.3.3 Nonfinite Numbers 

The CLAPACK implementation does not reliably handle nonfinite (infinite and indeterminate) 

floating point matrix or vector elements. For example, some computational loops are skipped 

when a factor is zero under the assumption that the skipped loop would have no impact on the 

computed results [7]. But this may fail to propagate nonfinite values or fail to detect invalid 

operations. 

Version 1.2 of the Ponderosa Computing Linear Algebra .NET class library does not provide 

special handling of nonfinite floating point matrix or vector elements, and its class methods 

might not provide reliable results for method arguments containing such elements. 
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4 LinearAlgebra Class Methods 
 

The Ponderosa Computing Linear Algebra .NET class library implements its functions using 

version 3.2.1 of CLAPACK [3]. This implementation of CLAPACK was machine translated by 

Netlib from Fortran 77 to ANSI C using the f2c tool and version 3.2.1 of LAPACK [2]. The 

Ponderosa Computing Linear Algebra .NET class library uses the reference BLAS library 

included with this CLAPACK distribution. 

4.1 Matrix Creation and Extraction 

The Ponderosa Computing Linear Algebra .NET class library provides the following class 

methods for creating matrices and extracting the diagonals of a matrix: 

Create a constant matrix GenerateConstant() 

Create a random matrix GenerateRandom() 

Create an identity matrix GenerateIdentity() 

Create a diagonal matrix GenerateDiagonal() 

Extract the diagonal elements of a matrix ExtractDiagonals() 

Extract a row vector from a matrix ExtractRow() 

Extract a column vector from a matrix ExtractColumn() 

Extract rows from a matrix ExtractRows() 

Extract columns from a matrix ExtractColumns() 

4.1.1 Create a Constant Matrix 

The class method 

 LinearAlgebra.GenerateConstant(m,n,value)  

returns an m x n matrix with entries all equal to value. If m < 1 or n < 1 then this method throws 

an eBadParamError LinearAlgebraException. 

4.1.2 Create a Random Matrix 

The class method 

 LinearAlgebra.GenerateRandom(m,n,minimum,maximum)  

returns an m x n matrix with random entries in [minimum, maximum). If m < 1 or n < 1 or 

maximum < minimum then this method throws an eBadParamError LinearAlgebraException. 
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This class method generates uniformly distributed random elements in the  interval [minimum, 

maximum] using a Mersenne Twister pseudo-random generator of 32-bit numbers with a state 

size of 19937 bits provided by the C++11 standard library. This generator is initialized when the 

PonderosaComputing.LinearAlgebra class instance is constructed and a class method is first 

invoked through this instance. 

4.1.3 Create an Identity Matrix 

The class method 

 LinearAlgebra.GenerateIdentity(n)  

returns an n x n identity matrix, 𝑰𝒏 , of order n. If n < 1 then this method throws an 

eBadParamError LinearAlgebraException. 

4.1.4 Create a Diagonal Matrix 

The class method 

 LinearAlgebra.GenerateDiagonal(d)  

returns an n x n diagonal matrix 𝑫 where n is the size of the argument vector 𝒅 containing the 

diagonal elements of the returned diagonal matrix. 

4.1.5 Extract Diagonal Elements 

The class method 

 LinearAlgebra.ExtractDiagonals(A)  

returns the min(m, n) main diagonal elements of an m x n matrix 𝑨 as a min(m, n)-element 

vector. 

4.1.6 Extract Row Elements 

The class method 

 LinearAlgebra.ExtractRow(A,r)  

returns the n elements of the r-th row of an m x n matrix 𝑨 as a n-element column vector 𝒗. The 

row number r is base 0. If r < 0 or r ≥ m then this method throws an eBadParamError 

LinearAlgebraException. 

4.1.7 Extract Column Elements 

The class method 



Ponderosa Computing Linear Algebra .NET Class Library 

 

 Copyright © 2019 Paul J. McClellan. All rights reserved. 13 

 LinearAlgebra.ExtractColumn(A,c)  

returns the m elements of the c-th column of an m x n matrix 𝑨 as an m-element vector 𝒗. The 

column number c is base 0. If c < 0 or c ≥ n then this method throws an eBadParamError 

LinearAlgebraException. 

4.1.8 Extract Rows 

The class method 

 LinearAlgebra.ExtractRows(A,r1,r2)  

returns the rows r1 through r2 of an m x n matrix 𝑨 as a (r2-r1+1) x n matrix. The row numbers r1 

and r2 are base 0. If r1 < 0 or r1 > r2 or r2 ≥ m then this method throws an eBadParamError 

LinearAlgebraException. 

4.1.9 Extract Columns 

The class method 

 LinearAlgebra.ExtractColumns(A,c1,c2)  

returns the columns c1 through c2 of an m x n matrix 𝑨 as a m x (c2-c1+1) matrix. The column 

numbers c1 and c2 are base 0. If c1 < 0 or c1 > c2 or c2 ≥ m then this method throws an 

eBadParamError LinearAlgebraException. 

4.2 Matrix Addition, Subtraction,  Multiplication, and Transpose 
Operations 

The Ponderosa Computing Linear Algebra .NET class library provides the following class 

methods for vector and matrix addition and subtraction and for matrix multiplication and 

transpose operations: 

Vector or Matrix addition Add() 

Vector or Matrix subtraction Subtract() 

Matrix multiplication Multiply() 

Matrix transpose multiplication TransposeMultiply() 

Matrix multiply transpose MultiplyTranspose() 

Transpose Transpose() 
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4.2.1 Vector or Matrix Addition 

The class method 

 LinearAlgebra.Add(a,b) 

returns the element-wise sum of n-element column vectors 𝒂 and 𝒃 as an n-element column 

vector 𝒄 =  𝒂 + 𝒃. If the number of elements of 𝒂 does not match the number of elements of 𝒃 

then this method throws an eBadParamError LinearAlgebraException. 

The class method 

 LinearAlgebra.Add(A,B) 

returns the element-wise sum of m x n matrices 𝑨 and 𝑩 as an m x n matrix 𝑪 =  𝑨 + 𝑩. If the 

number of rows and columns of 𝑨 do not match the number of rows and columns of 𝑩 then this 

method throws an eBadParamError LinearAlgebraException. 

4.2.2 Vector or Matrix Subtraction 

The class method 

 LinearAlgebra.Subtract(a,b) 

returns the element-wise difference of n-element column vectors 𝒂 and 𝒃 as an n-element 

column vector 𝒄 =  𝒂 − 𝒃. If the number of elements of 𝒂 does not match the number of 

elements of 𝒃 then this method throws an eBadParamError LinearAlgebraException. 

The class method 

 LinearAlgebra.Subtract(A,B) 

returns the element-wise difference of m x n matrices 𝑨 and 𝑩 as an m x n matrix 𝑪 =  𝑨 − 𝑩. If 

the number of rows and columns of 𝑨 do not match the number of rows and columns of 𝑩 then 

this method throws an eBadParamError LinearAlgebraException. 

4.2.3 Matrix Multiplication 

The class method 

 LinearAlgebra.Multiply(A,b) 

returns the product of an m x n matrix 𝑨 and a n-element column vector 𝒃 as an m-element 

column vector 𝒗 =  𝑨 𝒃. If the number of columns of 𝑨 does not match the number of elements 

of 𝒃 then this method throws an eBadParamError LinearAlgebraException. 
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The class method 

 LinearAlgebra.Multiply(A,B) 

returns the product of an m x n matrix 𝑨 and a n x p matrix 𝑩 as an m x p matrix 𝑪 =  𝑨 𝑩. If the 

number of columns of 𝑨 does not match the number of rows of 𝑩 then this method throws an 

eBadParamError LinearAlgebraException. 

These methods compute the matrix product using routine dgemm_() from the CLAPACK v 

3.2.1 BLAS package. 

4.2.4 Matrix Transpose Multiplication 

The class method 

 LinearAlgebra.TransposeMultiply(A,b) 

returns the product of the transpose of an n x m matrix 𝑨 and a n-element column vector 𝒃 as an 

m-element column vector 𝒗 =  𝑨𝑇𝒃. If the number of rows of 𝑨 does not match the number of 

elements of 𝒃 then this method throws an eBadParamError LinearAlgebraException. 

The class method 

 LinearAlgebra.TransposeMultiply(A,B) 

returns the product of an m x n matrix 𝑨 and a n x p matrix 𝑩 as an m x p matrix 𝑪 =  𝑨𝑇𝑩. If 
the number of columns of 𝑨 does not match the number of rows of 𝑩 then this method throws an 

eBadParamError LinearAlgebraException. 

These methods use routine dgemm_() from the CLAPACK v 3.2.1 BLAS package. 

4.2.5 Matrix Multiply Transpose 

The class method 

 LinearAlgebra.MultiplyTranspose(A,B) 

returns the product of an m x n matrix 𝑨 and the transpose of a p x n matrix 𝑩 as an m x p matrix 

𝑪 = 𝑨 𝑩𝑇 . If the number of columns of 𝑨 does not match the number of columns of 𝑩 then this 

method throws an eBadParamError LinearAlgebraException. 

This method uses routine dgemm_() from the CLAPACK v 3.2.1 BLAS package. 

4.2.6 Transpose 

The class method 
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 LinearAlgebra.Transpose(v) 

returns the transpose of an m-element column vector 𝒗 as the 1 x m matrix representing the row 

vector 𝒖 =  𝒗𝑇 . 

The class method 

 LinearAlgebra.Transpose(A) 

returns the transpose of an m x n matrix 𝑨 as the n x m matrix 𝑨𝑇 . 

4.3 Scalar-Valued Functions 

The Ponderosa Computing Linear Algebra .NET class library provides the following scalar-

valued vector and matrix methods: 

Vector dot product Dot() 

1-norm (column norm) of a vector or 

matrix 

OneNorm() 

Infinity-norm (row norm) of a vector or 

matrix 

InfinityNorm() 

Frobenius norm of a vector or matrix FrobeniusNorm() 

2-norm (spectral norm) of a vector or 

matrix 

TwoNorm() 

Rank of a matrix Rank() 

Spectral radius of a symmetric matrix SpectralRadius() 

Trace of a square matrix Trace() 

1-norm inverse condition number 

estimate of a square matrix 

InverseOneNormConditionNumberEstimate() 

Infinity-norm inverse condition number 

estimate of a square matrix 

InverseInfinityNormConditionNumberEstimate() 

Determinant of a square matrix Determinant() 

4.3.1 Vector Dot Product 

The class method 
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 LinearAlgebra.Dot(u,v) 

returns the dot product of two n-element column vectors 𝒖 and 𝒗. This is the sum of the products 

of the corresponding elements of 𝒖 and 𝒗: 

𝑢 · 𝑣 =∑𝑢𝑖 ∗ 𝑣𝑖

𝑛

𝑖=1

 

These methods compute the dot product using routine ddot_() from the CLAPACK v 3.2.1 

BLAS package. 

4.3.2 1-Norm (Column Norm) 

The class methods 

 LinearAlgebra.OneNorm(A) 

 LinearAlgebra.OneNorm(v) 

return the 1-norm (column norm, ‖𝑨‖1 , ‖𝒗‖1) of a matrix 𝑨 or column vector 𝒗, respectively. 

This is the maximum absolute column sum of the elements of an m x n matrix 𝑨: 

 ‖𝑨‖1 = max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

 

It is the absolute column sum of the elements of an n element column vector 𝒗: 

 ‖𝒗‖1 =∑|𝑣𝑖|

𝑛

𝑖=1

 

This method computes the 1-norm using the routine dlange_() from CLAPACK v 3.2.1. 

4.3.3 Infinity-Norm (Row Norm) 

The class methods 

 LinearAlgebra.InfinityNorm(A)  

 LinearAlgebra.InfinityNorm(v)  

return the infinity-norm (row norm, ‖𝑨‖∞ , ‖𝒗‖∞) of a matrix 𝑨 or column vector 𝒗, 

respectively. 
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This is the maximum absolute row sum of the elements of an m x n matrix 𝑨: 

 ‖𝑨‖∞ = max
1≤𝑖≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑗=1

 

It is the maximum absolute value of the elements of an n element column vector 𝒗: 

 ‖𝒗‖∞  = max
1≤𝑖≤𝑛

|𝑣𝑖| 

This method computes the infinity-norm using routine dlange_() from CLAPACK v 3.2.1. 

4.3.4 Frobenius-Norm 

The class methods 

 LinearAlgebra.ForbeniusNorm(A)  

 LinearAlgebra.ForbeniusNorm(v)  

return the Frobenius-norm (‖𝑨‖𝐹 , ‖𝒗‖𝐹) of a matrix 𝑨 or vector 𝒗, respectively. 

This is the square root of the sum of absolute squares (root mean square) of the elements of an m 

x n matrix 𝑨: 

 ‖𝑨‖𝐹 = √∑∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

 

It is the square root of the sum of absolute squares (root mean square) of the elements of an n 

vector 𝒗: 

 ‖𝒗‖𝐹 = √∑|𝑣𝑖|2
𝑛

𝑖=1

 

This method computes the Frobenius norm using routine dlange_() from CLAPACK v 3.2.1. 

4.3.5 2-Norm (Spectral Norm) 

The class methods 

 LinearAlgebra.TwoNorm(A)  
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 LinearAlgebra.TwoNorm(v)  

return the 2-norm (spectral norm, ‖𝑨‖2 , ‖𝒗‖2) of a matrix 𝑨 or column vector 𝒗, respectively. 

This is the largest singular value of an m x n matrix 𝑨: 

‖𝑨‖2 = 𝜎max (𝑨) . 

It is the square root of the sum of absolute squares (root mean square) of the elements of an n 

vector 𝒗: 

 ‖𝒗‖𝐹 = √∑|𝑣𝑖|2
𝑛

𝑖=1

 

This method computes the min(m, n) singular values of a m x n matrix 𝑨 using routine 

dgesvd_() from CLAPACK v 3.2.1. 

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or 

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find 

all the singular values of 𝑨 then this method throws an eInternalError LinearAlgebraException. 

This method computes the 2-norm of a vector using routine dlange_() from CLAPACK v 

3.2.1.  

4.3.6 Rank 

The column rank of an m x n matrix 𝑨 is the maximum number of linearly independent column 

vectors of A. The row rank of an m x n matrix 𝑨 is the maximum number of linearly 

independent row vectors of 𝑨. The column rank and the row rank are equal, and this is called the 

rank of the matrix 𝑨. The rank of an m x n matrix 𝑨 is also the number of nonzero singular 

values of 𝑨. 

The class method 

 LinearAlgebra.Rank(A)  

returns the rank of a m x n matrix 𝑨. This method computes the min(m, n) singular values of 𝑨 

using routine dgesvd_() from CLAPACK v 3.2.1. The rank is then determined as the number 

of computed singular values that are significantly greater than zero. 

The Ponderosa Computing Linear Algebra .NET class library uses the threshold value 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =    max (𝑠𝑓𝑚𝑖𝑛 , max (𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ 𝜎max (𝑨))   . 
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A computed singular value is considered significantly greater than zero if it exceeds this 

threshold. Here 𝑠𝑎𝑓𝑒𝑚𝑖𝑛 is the minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛 

does not overflow, 𝑒𝑝𝑠 is the relative machine precision, and 𝜎max (𝑨) is the largest singular 

value of 𝑨. 

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or 

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find 

all the singular values of 𝑨 then this method throws an eInternalError LinearAlgebraException.  

4.3.7 Spectral Radius 

Let 𝜆1, 𝜆2, ... , 𝜆𝑛 be the (real) eigenvalues of an n x n symmetric (real) matrix 𝑨. Then the 

spectral radius of 𝑨 is: 

𝜌(𝑨) =  max𝑖(|𝜆𝑖|) . 

The class method 

 LinearAlgebra.SpectralRadius(A) 

returns the spectral radius of a symmetric matrix 𝑨. If 𝑨 is not symmetric then this method 

throws an eBadParamError LinearAlgebraException. 

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1. 

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric 

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this 

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method 

throws an eInternalError LinearAlgebraException. 

4.3.8 Trace 

The trace of an n x n matrix 𝑨 is the sum of the main diagonal elements of 𝑨: 

𝑡𝑟(𝑨) = ∑𝑎𝑖𝑖

𝑛

𝑖=1

 

The class method 

 LinearAlgebra.Trace(A) 

returns the trace of a square matrix 𝑨 directly from its definition. If 𝑨 is not square then this 

method throws an eBadParamError LinearAlgebraException. 



Ponderosa Computing Linear Algebra .NET Class Library 

 

 Copyright © 2019 Paul J. McClellan. All rights reserved. 21 

4.3.9 1-Norm Inverse Condition Number Estimate 

The class method 

 LinearAlgebra.InverseOneNormConditionNumberEstimate(A) 

returns the inverse of a 1-norm condition number estimate of a square matrix 𝑨. If 𝑨 is not 

square this method throws an eBadParamError LinearAlgebraException. 

This method starts by computing ‖𝑨‖1 using routine dlange_() from CLAPACK v 3.2.1 and 

returns zero if ‖𝑨‖1 = 0. 

This method then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU 

factorization 𝑨 = 𝑷 𝑳 𝑼 using partial pivoting with row interchanges. If routine dgetrf_() 
determines the matrix 𝑨 is exactly singular then this method returns 0. 

Otherwise, this method estimates ‖𝑨−𝟏‖
1
 using the LU factorization and routine dgecon_() 

from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
1
 estimate is zero. Otherwise this method 

returns the inverse condition number estimate 

𝑐 =
1

‖𝑨‖1‖𝑨−𝟏‖1
 

LinearAlgebra.InverseOneNormConditionNumberEstimate() returns the 

inverse of the 1-norm condition number estimate of a matrix, rather than the condition number 

estimate of the matrix, itself, to provide a zero return value for singular matrices. 

4.3.10 Infinity-Norm Inverse Condition Number Estimate 

The class method 

 LinearAlgebra.InverseInfinityNormConditionNumberEstimate(A) 

returns the inverse of an infinity-norm condition number estimate of a square matrix 𝑨. If 𝑨 is 

not square this method throws an eBadParamError LinearAlgebraException. 

This method starts by computing ‖𝑨‖∞ using routine dlange_() from CLAPACK v 3.2.1 and 

returns zero if ‖𝑨‖∞ = 0. 

This method then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU 

factorization 𝑨 = 𝑷 𝑳 𝑼 using partial pivoting with row interchanges. If routine 

dgetrf_()determines the matrix 𝑨 is exactly singular then this method returns 0. 
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Otherwise, This method estimates ‖𝑨−𝟏‖
∞

 using the LU factorization and routine dgecon_() 

from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
∞

 estimate is zero. Otherwise This method 

returns the inverse condition number estimate 

𝑐 =
1

‖𝑨‖∞‖𝑨−𝟏‖∞
 

LinearAlgebra.InverseInfinityNormConditionNumberEstimate() returns 

the inverse of the infinity-norm condition number estimate of a matrix, rather than the condition 

number estimate of the matrix, itself, to provide a zero return value for singular matrices. 

4.3.11 Determinant 

The class method 

 LinearAlgebra.Determinant(A)  

returns the determinant of a square matrix 𝑨. If 𝑨 is not square then this method throws an 

eBadParamError LinearAlgebraException. 

This method computes the determinant of 𝑨 by using routine dgetrf_() from CLAPACK v 

3.2.1 to compute the LU factorization 𝑨 = 𝑷 𝑳 𝑼 using partial pivoting with row interchanges. If 

routine dgetrf_()determines the matrix 𝑨 is exactly singular then this method returns 0. 

Otherwise, This method accumulates the product of the diagonal entries of 𝑼 with sign 

adjustment according to pivot row interchanges and scaling to avoid intermediate overflow. 

4.4 Full-Rank Square Linear System Solvers 

The Ponderosa Computing Linear Algebra .NET class library provides the following full-rank 

square linear system solver methods: 

Full rank square system solvers SolveFullRankLinearSystem() 

SolveFullRankLinearSystemEB() 

4.4.1 System Solution 

The class method 

 LinearAlgebra. SolveFullRankLinearSystem(A,b) 

returns the solution vector 𝒙 to a full-rank real linear system: 

𝑨 𝒙 =  𝒃 
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using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝒃 is a n-

element column vector. The solution vector 𝒙 is a n-element column vector. If 𝑨 is not square or 

if vector 𝒃 does not have n elements this method throws an eBadParamError 

LinearAlgebraException. 

The class method 

 LinearAlgebra. SolveFullRankLinearSystem(A,B) 

returns the solution matrix 𝑿 to a full-rank real linear system: 

𝑨 𝑿 =  𝑩  

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝑩 is a n x p 

matrix. The solution matrix 𝑿 is n x p. If 𝑨 is not square or if matrix 𝑩 does not have n rows this 

method throws an eBadParamError LinearAlgebraException. 

These methods compute the solution matrix 𝑿 by using routine dgesvx_() from CLAPACK v 

3.2.1, using equilibration and iterative refinement as needed. If routine dgesvx_()determines 

the matrix 𝑨 is exactly singular then these methods throw an eInternalError 

LinearAlgebraException. 

4.4.2 System Solution with Error Bounds 

The class method 

 LinearAlgebra. SolveFullRankLinearSystemEB(A,b) 

returns the solution vector 𝒙 and forward error bound estimate e to a full-rank real linear system: 

𝑨 𝒙 =  𝒃 

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝒃 is a n-

element column vector. The solution vector 𝒙 is a n-element column vector and the forward error 

bound estimate e is a scalar. If 𝑨 is not square or if vector 𝒃 does not have n elements this 

method throws an eBadParamError LinearAlgebraException. 

The computed solution vector 𝒙 is returned as the first n elements of a (n+1)-element augmented 

solution vector 𝒙𝑨. The forward error bound estimate e is returned as the last element of 𝒙𝑨. 

𝒙𝑨 = 

[
 
 
 
 
𝑥1

𝑥2

⋮
𝑥𝑛

𝑒 ]
 
 
 
 

  . 
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The forward error bound estimate e bounds the relative error in the computed solution. If 𝒙 is the 

computed solution and 𝒙𝒕 is the true solution, then the relative error is bounded by: 

‖𝒙 − 𝒙𝒕‖∞

‖𝒙‖∞
≤ 𝑒 

That is, e is an estimated upper bound for the magnitude of the largest element in 𝒙 − 𝒙𝒕 divided 

by the magnitude of the largest element in 𝒙. This estimate is almost always a slight overestimate 

of the true error. 

The class method 

 LinearAlgebra. SolveFullRankLinearSystemEB(A,B) 

returns the solution matrix 𝑿 and forward error bound estimates e to a full-rank real linear 

system: 

𝑨 𝑿 =  𝑩  

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝑩 is a n x p 

matrix. The solution matrix 𝑿 is n x p and the forward error bound estimates e is a row vector. If 

𝑨 is not square or if matrix 𝑩 does not have n rows this method throws an eBadParamError 

LinearAlgebraException. 

The computed matrix solution 𝑿 is returned as the first n rows of a (n+1) x p augmented solution 

matrix 𝑿𝑨. The forward error bound estimate row vector e is returned as the last row of 𝑿𝑨. 

𝑿𝑨 =

[
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝 ]
 
 
 
 

 . 

For each column j of the augmented solution matrix, the forward error bound estimate 𝑒𝑗 bounds 

the relative error in the computed solution column 𝒙𝒋. If 𝒙𝒋 is the computed solution column and 

𝒙𝒋𝒕 is the true solution column, then the relative error for that column is bounded by: 

‖𝒙𝒋 − 𝒙𝒋𝒕‖∞

‖𝒙𝒋‖∞

≤ 𝑒𝑗 

That is, 𝑒𝑗 is an estimated upper bound for the magnitude of the largest element in 𝒙𝒋 − 𝒙𝒋𝒕 

divided by the magnitude of the largest element in 𝒙𝒋. This estimate is almost always a slight 

overestimate of the true error. 
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These methods compute the augmented solution matrix 𝑿 by using routine dgesvx_() from 

CLAPACK v 3.2.1, using equilibration and iterative refinement as needed. If routine 

dgesvx_()determines the matrix 𝑨 is exactly singular then these methods throw an 

eInternalError LinearAlgebraException. 

4.5 General Least-Squares System Solvers 

The Ponderosa Computing Linear Algebra .NET class library provides the following real linear 

least squares system solver methods: 

General least-squares system solvers (via LQ/QR) SolveLsqLinearSystem() 

SolveLsqLinearSystemEB() 

General least-squares system solvers (via SVD) SolveLsqLinearSystemSvd() 

SolveLsqLinearSystemSvdEB() 

 

4.5.1 General Least-Squares System Solvers (via Orthogonal Factorizations) 

4.5.1.1 System Solution 

The class method 

 LinearAlgebra.SolveLsqLinearSystem(A,b) 

returns the minimum-norm solution vector 𝒙 to a real linear least squares system: 

𝐦𝐢𝐧𝒙‖𝒃 −  𝑨𝒙‖𝟐  , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 . 

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector. 

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm 

residual. This method uses a complete orthogonal factorization of 𝑨. If the number of rows of 𝑨 

does not match the number of elements of 𝒃 then this method throws an eBadParamError 

LinearAlgebraException. 

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved in a 

single method call. The p right hand side m-element column vectors 𝒃𝒋 for the least squares 

systems: 

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 −  𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝 

are stored as the columns of a m x p matrix 𝑩. 

The class method: 



Ponderosa Computing Linear Algebra .NET Class Library 

 

 Copyright © 2019 Paul J. McClellan. All rights reserved. 26 

 LinearAlgebra.SolveLsqLinearSystem(A,B) 

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the n x p solution matrix 𝑿. If the number of rows of 𝑨 does not match the number 

of rows of 𝑩 then this method throws an eBadParamError LinearAlgebraException. 

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelsy_() from 

CLAPACK v 3.2.1. This routine first computes a QR factorization of 𝑨 with column pivoting. It 

then determines the effective rank r of 𝑨 and then refactors a reduced system into an r x r 

triangular system which is then solved. If routine dgelsy_()determines the matrix 𝑨 has 

effective rank 0 then these methods return the zero solution vector 𝒙 or matrix 𝑿. 

4.5.1.2 System Solution with Error Bounds 

The class method 

 LinearAlgebra.SolveLsqLinearSystemEB(A,b) 

returns the minimum-norm solution vector x and forward error bound estimate e to a real linear 

least squares system: 

𝐦𝐢𝐧𝒙‖𝒃 −  𝑨𝒙‖𝟐  , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 . 

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector. 

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm 

residual. The forward error bound estimate e is a scalar. This method uses a complete orthogonal 

factorization of 𝑨. If the number of rows of 𝑨 does not match the number of elements of 𝒃 then 

this method throws an eBadParamError LinearAlgebraException. 

The computed solution vector x is returned as the first n elements of a (n+1)-element augmented 

solution vector 𝒙𝑨. If the matrix 𝑨 has m ≥ n (we have an overdetermined system) with full 

column rank then this method also returns a forward error bound estimate e as the last element of 

xA.  Otherwise this method returns the value -1 as the last element of 𝒙𝑨. 

𝒙𝑨 = 

[
 
 
 
 
𝑥1

𝑥2

⋮
𝑥𝑛

𝑒 ]
 
 
 
 

  . 

The forward error bound estimate e bounds the relative error in the computed solution. If 𝒙 is the 

computed solution and 𝒙𝒕 is the true solution, then the relative error is bounded by: 

‖𝒙 − 𝒙𝒕‖2

‖𝒙𝒕‖2
≤ 𝑒 
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That is, e is an estimated upper bound for the root mean square of 𝒙 − 𝒙𝒕 divided by the root 

mean square of 𝒙𝒕. This estimate is almost always a slight overestimate of the true error. 

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved with 

forward error bound estimates in a single method call. The p right hand side m-element column 

vectors bj for the least squares systems: 

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 −  𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝 

are stored as the columns of a m x p matrix 𝑩. 

The class method: 

 LinearAlgebra.SolveLsqLinearSystemEB(A,B) 

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the first n rows of the augmented (n+1) x p augmented solution matrix 𝑿𝑨. If the 

matrix 𝑨 has m ≥ n (we have an overdetermined system) with full column rank then this method 

also returns a forward error bound estimate ej  returned as the last element of column j of 𝑿𝑨.  

Otherwise this method returns the value -1 as the last element of column j of 𝑿𝑨. 

𝑿𝑨 =

[
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝 ]
 
 
 
 

 . 

If the number of rows of 𝑨 does not match the number of rows of 𝑩 then this method throws an 

eBadParamError LinearAlgebraException. 

For each computed solution vector 𝒙𝒋, the forward error bound estimate ej bounds the relative 

error in the solution 𝒙𝒋. If 𝒙𝒋 is the computed solution vector and 𝒙𝒋𝒕 is the true solution vector, 

then the relative error for that solution vector is bounded by: 

‖𝒙𝒋 − 𝒙𝒋𝒕‖2

‖𝒙𝒋𝒕‖2

≤ 𝑒 

That is, ej is an estimated upper bound for the root mean square of 𝒙𝒋 − 𝒙𝒋𝒕 divided by the root 

mean square of 𝒙𝒋𝒕. This estimate is almost always a slight overestimate of the true error. 

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelsy_() from 

CLAPACK v 3.2.1. This routine first computes a QR factorization of 𝑨 with column pivoting. It 

then determines the effective rank r of 𝑨 and then refactors a reduced system into an r x r 
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triangular system which is then solved. If routine dgelsy_()determines the matrix 𝑨 has 

effective rank 0 then these methods return the zero solution vector 𝒙 or matrix 𝑿. 

The error bounds for the full column rank overdetermined case are computed in the manner 

described here: http://www.netlib.org/lapack/lug/node82.html. 

4.5.2 General Least-Squares System Solvers (via SVD) 

4.5.2.1 System Solution 

The class method 

 LinearAlgebra.SolveSvdLinearSystem(A,b) 

returns the minimum-norm solution vector 𝒙 to a real linear least squares system: 

𝐦𝐢𝐧𝒙‖𝒃 −  𝑨𝒙‖𝟐  , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 . 

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector. 

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm 

residual. This method uses the singular value decomposition of 𝑨. If the number of rows of 𝑨 

does not match the number of elements of 𝒃 then this method throws an eBadParamError 

LinearAlgebraException. 

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved in a 

single method call. The p right hand side m-element column vectors 𝒃𝒋 for the least squares 

systems: 

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 −  𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝 

are stored as the columns of a m x p matrix 𝑩. 

The class method: 

 LinearAlgebra.SolveLsqLinearSystem(A,B) 

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the n x p solution matrix 𝑿. If the number of rows of 𝑨 does not match the number 

of rows of 𝑩 then this method throws an eBadParamError LinearAlgebraException. 

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelss_() from 

CLAPACK v 3.2.1. This routine first computes the singular value decomposition of 𝑨. It then 

determines the effective rank r of 𝑨, zeros out the insignificant portion of the SVD, and solves 

the reduced system. If routine dgelss_()determines the matrix 𝑨 has effective rank 0 then 

these methods return the zero solution vector 𝒙 or matrix 𝑿. 

http://www.netlib.org/lapack/lug/node82.html
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4.5.2.2 System Solution with Error Bounds 

The class method 

 LinearAlgebra.SolveSvdLinearSystemEB(A,b) 

returns the minimum-norm solution vector 𝒙 and forward error bound estimate e to a real linear 

least squares system: 

𝐦𝐢𝐧𝒙‖𝒃 −  𝑨𝒙‖𝟐  , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 . 

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector. 

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm 

residual. The forward error bound estimate e is a scalar. This method uses the singular value 

decomposition of 𝑨. If the number of rows of 𝑨 does not match the number of elements of 𝒃 then 

this method throws an eBadParamError LinearAlgebraException. 

The computed solution vector 𝒙 is returned as the first n elements of a (n+1)-element augmented 

solution vector 𝒙𝑨. If the matrix 𝑨 has m ≥ n (we have an overdetermined system) with full 

column rank then this method also returns a forward error bound estimate e as the last element of 

𝒙𝑨.  Otherwise this method returns the value -1 as the last element of 𝒙𝑨. 

𝒙𝑨 = 

[
 
 
 
 
𝑥1

𝑥2

⋮
𝑥𝑛

𝑒 ]
 
 
 
 

  . 

The forward error bound estimate e bounds the relative error in the computed solution. If 𝒙 is the 

computed solution and 𝒙𝒕 is the true solution, then the relative error is bounded by: 

‖𝒙 − 𝒙𝒕‖2

‖𝒙𝒕‖2
≤ 𝑒 

That is, e is an estimated upper bound for the root mean square of 𝒙 − 𝒙𝒕 divided by the root 

mean square of 𝒙𝒕. This estimate is almost always a slight overestimate of the true error. 

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved with 

forward error bound estimates in a single method call. The p right hand side m-element column 

vectors 𝒃𝒋 for the least squares systems: 

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 −  𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝 

are stored as the columns of a m x p matrix 𝑩. 

The class method: 
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 LinearAlgebra.SolveSvdLinearSystemEB(A,B) 

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the first n rows of the augmented (n+1) x p augmented solution matrix 𝑿𝑨. If the 

matrix 𝑨 has m ≥ n (we have an overdetermined system) with full column rank then this method 

also returns a forward error bound estimate ej  returned as the last element of column j of 𝑿𝑨.  

Otherwise this method returns the value -1 as the last element of column j of 𝑿𝑨. 

𝑿𝑨 =

[
 
 
 
 
𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝 ]
 
 
 
 

 . 

If the number of rows of 𝑨 does not match the number of rows of 𝑩 then this method throws an 

eBadParamError LinearAlgebraException. 

For each computed solution vector 𝒙𝒋, the forward error bound estimate ej bounds the relative 

error in the solution 𝒙𝒋. If 𝒙𝒋 is the computed solution vector and 𝒙𝒋𝒕 is the true solution vector, 

then the relative error for that solution vector is bounded by: 

‖𝒙𝒋 − 𝒙𝒋𝒕‖2

‖𝒙𝒋𝒕‖2

≤ 𝑒 

That is, ej is an estimated upper bound for the root mean square of 𝒙𝒋 − 𝒙𝒋𝒕 divided by the root 

mean square of 𝒙𝒋𝒕. This estimate is almost always a slight overestimate of the true error. 

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelss_() from 

CLAPACK v 3.2.1. This routine first computes the singular value decomposition of 𝑨. It then 

determines the effective rank r of 𝑨, zeros out the insignificant portion of the SVD, and solves 

the reduced system. If routine dgelss_()determines the matrix 𝑨 has effective rank 0 then 

these methods return the zero solution vector 𝒙 or matrix 𝑿. 

The error bounds for the full column rank overdetermined case are computed in the manner 

described here: http://www.netlib.org/lapack/lug/node82.html. 

4.6 Singular Value Decomposition 

The singular value decomposition of an m x n (real) matrix 𝑨 is a factorization of 𝑨 into the 

form: 

𝑨 =  𝑼 𝜮 𝑽𝑇 

http://www.netlib.org/lapack/lug/node82.html
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where 𝑼 is a m x m matrix, 𝑽𝑇 is an n x n matrix, and 𝜮 is a m x n rectangular diagonal matrix 

with p = min(m,n) nonnegative entries on the main diagonal. 

The nonnegative diagonal entries of 𝜮 are the singular values of 𝑨 , {𝜎1, 𝜎2, … 𝜎min (𝑚,𝑛)} , 

arranged in descending order:  𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min (𝑚,𝑛) ≥ 0 . 

The matrices 𝑼 and 𝑽 are orthonormal: 

 𝑼𝑇𝑼 =  𝑼 𝑼𝑇 = 𝑰𝒎 , 𝑽𝑇𝑽 =  𝑽 𝑽𝑇 = 𝑰𝒏 , 

where 𝑰𝒎  and 𝑰𝒏  denote the identity matrices of order m and n, respectively. The m columns of 

𝑼, {𝒖1, 𝒖2, …𝒖𝑚}, are called the left singular vectors of 𝑨 . The n columns of 𝑽, {𝒗1, 𝒗2, … 𝒗𝑛}, 
are called the right singular vectors of 𝑨 . 

Since 𝜮 is a m x n rectangular diagonal matrix with p = min(m,n), the singular value 

decomposition can be represented as the thin singular value decomposition: 

𝑨 =  𝑼𝒑 𝜮𝒑 𝑽𝒑
𝑇 , 

Where 𝑼𝒑  is the m x p matrix consisting of the first p columns of 𝑼 , 𝜮𝒑 is the p x p upper 

diagonal portion of 𝜮 , and 𝑽𝒑  is the n x p matrix consisting of the first p columns of 𝑽 . The p 

columns of 𝑼𝒑 and the p columns of 𝑽𝒑 are orthonormal: 

𝑼𝒑
𝑇𝑼𝒑 = 𝑰𝒑 , 𝑽𝒑

𝑇𝑽𝒑 = 𝑰𝒑 , 

where 𝑰𝒑  denote the identity matrix of order p.  

The Ponderosa Computing Linear Algebra .NET class library provides the following methods 

computing the thin singular value decomposition or parts thereof of a matrix: 

Singular value decomposition SingularValueDecomposition() 

Singular values SingularValues() 

SingularValuesEB() 

Left or right singular vectors SingularValuesLeftVectors() 

SingularValuesRightVectors() 

4.6.1 Singular Value Decomposition 

The class method 

 LinearAlgebra.SingularValueDecomposition(A) 
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returns the thin singular value decomposition of an m x n matrix 𝑨. This function returns the p = 

min(m,n) singular values, their associated left singular vectors, and their associated right singular 

vectors of 𝑨 in the p columns of a (m+n+1) x p matrix 𝑺: 

𝑺 =

[
 
 
 
 
 
 

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

𝑣11 𝑣21 ⋯ 𝑣𝑝1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑝𝑛 ]

 
 
 
 
 
 

 

The first row of 𝑺 contains the p singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order. The 

columns of the next m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}. The columns 

of the last n rows contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}. 

This method computes the singular value decomposition of 𝑨 using routine dgesvd_() from 

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular 

values and singular vectors of an (upper or lower) bidiagonal matrix using the implicit zero-shift 

QR algorithm. If this algorithm fails to find all the singular values of 𝑨 then this method throws 

an eInternalError LinearAlgebraException.  

4.6.2 Singular Values 

The class method 

 LinearAlgebra.SingularValues(A) 

returns the p = min(m,n) singular values of a m x n matrix 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order 

as an p-element column vector 𝒔: 

𝒔 =  [

𝜎1

𝜎2

⋮
𝜎p

]  . 

This method computes the singular values of 𝑨 using routine dgesvd_() from CLAPACK v 

3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper 

or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to 

find all the singular values of 𝑨 then this method throws an eInternalError 

LinearAlgebraException.  

4.6.3 Singular Values With Error Bound 

The class method 
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 LinearAlgebra.SingularValuesEB(A) 

returns the p = min(m,n) singular values of a m x n matrix 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order 

followed by a forward error bound estimate e as an (p+1)-element column vector 𝒔𝑨: 

𝒔𝑨 = 

[
 
 
 
 
𝜎1

𝜎2

⋮
𝜎p

𝑒 ]
 
 
 
 

  . 

The forward error bound estimate e bounds the absolute error in the computed singular values. If 

𝜎𝑖 is the i-th computed singular value and 𝜎𝑖𝑡 is the i-th true singular value, then the absolute 

error in 𝜎𝑖 is bounded by: 

|𝜎𝑖 − 𝜎𝑖𝑡| ≤ 𝑒 

This estimate is almost always a slight overestimate of the true error. 

This method computes the singular values of 𝑨 using routine dgesvd_() from CLAPACK v 

3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper 

or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to 

find all the singular values of 𝑨 then this method throws an eInternalError 

LinearAlgebraException.  

The singular values forward error bound e is: 

𝑒 = max(𝑠𝑓𝑚𝑖𝑛 ,max(𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ σ1)  . 

This error bound is described here: http://www.netlib.org/lapack/lug/node97.html, but this 

methods uses p(m,n) = max(m,n) in place of p(m,n) = 1 as the "modestly growing function of n" 

and uses machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is 

similar to that found in the example program: http://www.nag.com/lapack-ex/node128.html . 

4.6.4 Left Singular Vectors 

The class method 

 LinearAlgebra.SingularValuesLeftVectors(A) 

returns the p = min(m,n) singular values and first p left singular vectors of a m x n matrix 𝑨 in 

the p columns of a (m+1) x p matrix 𝑺: 

http://www.netlib.org/lapack/lug/node97.html
http://www.nag.com/lapack-ex/node128.html
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𝑺 = [

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

] 

The first row of 𝑺 contains the p singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order. The 

columns of the remaining m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}.  

This method computes the singular value decomposition of 𝑨 using routine dgesvd_() from 

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular 

values and singular vectors of an (upper or lower) bidiagonal matrix using the implicit zero-shift 

QR algorithm. If this algorithm fails to find all the singular values of 𝑨 then this method throws 

an eInternalError LinearAlgebraException.  

4.6.5 Right Singular Vectors 

The class method 

 LinearAlgebra.SingularValuesRightVectors(A) 

returns the p = min(m,n) singular values and first p right singular vectors of a m x n matrix 𝑨 in 

the p rows of a p x (n+1) matrix 𝑺: 

𝑺 = [

𝜎1 𝑣11 𝑣12 ⋯ 𝑣1𝑛

𝜎2 𝑣21 𝑣22 ⋯ 𝑣2𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝜎𝑝 𝑣𝑝1 𝑣𝑝2 ⋯ 𝑣𝑝𝑛

] 

The first column of 𝑺 contains the p singular values of 𝑨 in descending order. The rows of the 

remaining n columns of 𝑺 contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}. 

This method computes the singular value decomposition of 𝑨 using routine dgesvd_() from 

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular 

values and singular vectors of an (upper or lower) bidiagonal matrix using the implicit zero-shift 

QR algorithm. If this algorithm fails to find all the singular values of 𝑨 then this method throws 

an eInternalError LinearAlgebraException.  

4.7 Eigenvalues and Eigenvectors 

A right eigenvector of an n x n symmetric (real) matrix 𝑨 is a nonzero n-vector 𝒗 such that the 

matrix product: 

𝑨𝒗 = 𝜆𝒗 .  
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Here λ is a real number (scalar) called the eigenvalue of 𝑨 corresponding to the right eigenvector 

𝒗. The set of all eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}, each paired with its corresponding eigenvalue, 

{𝜆1, 𝜆2, … 𝜆𝑛}, is called the eigensystem of the matrix 𝑨. It can be expressed as: 

𝑨 𝑽 =  𝑽 𝜦. 

Here 𝜦 is a n x n diagonal matrix with diagonal entries {𝜆1, 𝜆2, … 𝜆𝑛} and 𝑽 is a n x n matrix with 

columns  {𝒗1, 𝒗2, … 𝒗𝑛}. 

The Ponderosa Computing Linear Algebra .NET class library provides the following methods 

computing the eigenvalues and right eigenvectors of a symmetric (real) matrix: 

Eigenvalues Eigenvalues() 

EigenvaluesEB() 

Eigenvalues and right eigenvectors EigenvaluesRightEigenvectors() 

4.7.1 Eigenvalues 

The class method 

 LinearAlgebra.Eigenvalues(A) 

returns the eigenvalues of an n x n symmetric (real) matrix 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, as an n-element column vector 𝛌: 

𝛌 =  [

𝜆1

𝜆2

⋮
𝜆n

]  . 

If 𝑨 is not symmetric then this method throws an eBadParamError LinearAlgebraException. 

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1. 

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric 

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this 

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method 

throws an eInternalError LinearAlgebraException. 

4.7.2 Eigenvalues with Error Bounds 

The class method 

 LinearAlgebra.EigenvaluesEB(A) 
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returns the eigenvalues of an n x n symmetric (real) matrix 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, followed by a forward error bound estimate e as an (n+1)-element column 

vector 𝛌𝑨: 

𝛌𝑨 = 

[
 
 
 
 
𝜆1

𝜆2

⋮
𝜆n

𝑒 ]
 
 
 
 

  . 

If 𝑨 is not symmetric then this method throws an eBadParamError LinearAlgebraException. 

The forward error bound estimate e bounds the absolute error in the computed eigenvalues. If 𝜆𝑖 

is the i-th computed eigenvalue and 𝜆𝑖𝑡 is the i-th true eigenvalue, then the absolute error in 𝜆𝑖 is 

bounded by: 

|𝜆𝑖 − 𝜆𝑖𝑡| ≤ 𝑒 

This estimate is almost always a slight overestimate of the true error. 

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1. 

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric 

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this 

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method 

throws an eInternalError LinearAlgebraException. 

The eigenvalues forward error bound e is: 

𝑒 = max (𝑠𝑓𝑚𝑖𝑛 , 𝑛 ∗ 𝑒𝑝𝑠 ∗ max𝑖(|𝜆𝑖|))   . 

This error bound is described here: http://www.netlib.org/lapack/lug/node90.html, but this 

method uses p(n) = n in place of p(n) = 1 as the "modestly growing function of n" and uses 

machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is similar to that 

found in the example program: http://www.nag.com/lapack-ex/node71.html. 

4.7.3 Eigenvalues and Right Eigenvectors 

The class method 

 LinearAlgebra.EigenvaluesRightEigenvectors(A) 

returns the eigenvalues and right eigenvectors of an n x n symmetric (real) matrix 𝑨 in the n 

columns of the (n+1) x n matrix 𝑽𝑨. 

http://www.netlib.org/lapack/lug/node90.html
http://www.nag.com/lapack-ex/node71.html
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𝑽𝑨 = [

𝜆1 𝜆2 ⋯ 𝜆𝑛

𝑣11 𝑣21 ⋯ 𝑣𝑛1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑛𝑛

] 

The first row of 𝑽𝑨 contains the n eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 𝜆1 ≤ 𝜆2 ≤
⋯ ≤ 𝜆n. The columns of the remaining n rows of 𝑽𝑨 contain the corresponding n right 

eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}. 

If 𝑨 is not symmetric then this method throws an eBadParamError LinearAlgebraException. 

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1. 

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric 

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this 

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method 

throws an eInternalError LinearAlgebraException. 

4.8 Cholesky Factorization 

The upper triangular Cholesky factorization (or decomposition) of an n x n symmetric 

positive definite matrix A is the unique factorization of 𝑨 into 

𝑨 =  𝑼𝑇𝑼 

where 𝑼 is an n x n upper triangular matrix with positive entries on the diagonal. 

The lower triangular Cholesky factorization (or decomposition) of an n x n symmetric 

positive definite matrix A is the unique factorization of 𝑨 into 

𝑨 =  𝑳 𝑳𝑇 

where 𝑳 is an n x n lower triangular matrix with positive entries on the diagonal. 

The Ponderosa Computing Linear Algebra .NET class library provides the following methods 

computing the Cholesky factorizations of a symmetric positive definite matrix: 

Upper Cholesky factorization UpperCholeskyFactorization() 

Lower Cholesky factorization LowerCholeskyFactorization() 

4.8.1 Upper and Lower Cholesky Factorizations 

The class method 

 LinearAlgebra.UpperCholeskyFactorization(A)  



Ponderosa Computing Linear Algebra .NET Class Library 

 

 Copyright © 2019 Paul J. McClellan. All rights reserved. 38 

returns the upper triangular Cholesky factorization of an n x n symmetric positive definite matrix 

𝑨 as an n x n upper triangular matrix 𝑼 with positive entries on the diagonal. 

The class method 

 LinearAlgebra.LowerCholeskyFactorization(A)  

returns the lower triangular Cholesky factorization of an n x n symmetric positive definite matrix 

𝑨 as an n x n lower triangular matrix 𝑳 with positive entries on the diagonal. 

These methods compute a Cholesky factorization of an n x n symmetric positive definite matrix 

𝑨 using routine dpotrf_() from CLAPACK v 3.2.1. If this algorithm determines the the matrix 

𝑨 is not positive definite then these methods throw an eBadParamError 

LinearAlgebraException. 
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6 License Notice 

The Ponderosa Computing Linear Algebra .NET class library was built using the CLAPACK 

implementation of LAPACK, a freely-available software package from netlib at 

http://www.netlib.org/lapack. The license used for the LAPACK software is the modified BSD 

license: 

Copyright (c) 1992-2013 The University of Tennessee and The University 

                        of Tennessee Research Foundation.  All rights 

                        reserved. 

Copyright (c) 2000-2013 The University of California Berkeley. All 

                        rights reserved. 

Copyright (c) 2006-2013 The University of Colorado Denver.  All rights 

                        reserved. 

 

$COPYRIGHT$ 

 

Additional copyrights may follow 

 

$HEADER$ 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are 

met: 

 

- Redistributions of source code must retain the above copyright 

  notice, this list of conditions and the following disclaimer. 

 

- Redistributions in binary form must reproduce the above copyright 

  notice, this list of conditions and the following disclaimer listed 

  in this license in the documentation and/or other materials 

  provided with the distribution. 

 

- Neither the name of the copyright holders nor the names of its 

  contributors may be used to endorse or promote products derived from 

  this software without specific prior written permission. 

 

The copyright holders provide no reassurances that the source code 

provided does not infringe any patent, copyright, or any other 

intellectual property rights of third parties.  The copyright holders 

disclaim any liability to any recipient for claims brought against 

recipient by any third party for infringement of that parties 

intellectual property rights. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

http://www.netlib.org/lapack/#_licensing
http://www.netlib.org/lapack
http://www.netlib.org/lapack/LICENSE.txt
http://www.netlib.org/lapack/LICENSE.txt

