
Ponderosa Computing

Linear Algebra .NET Class Library

Paul J. McClellan, Ph.D.

7 August 2019

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 2

Table of Contents

1 PONDEROSA COMPUTING LINEAR ALGEBRA .NET CLASS LIBRARY 4

2 HOW TO USE THIS CLASS LIBRARY.. 5

3 NOTATION, IMPLEMENTATION, AND NUMERICAL PRECISION 8

3.1 LINEAR ALGEBRA NOTATION .. 8
3.2 LIBRARY USES THE CLAPACK IMPLEMENTATION OF LAPACK 9
3.3 LIBRARY COMPUTATIONS USE IEEE 754 DOUBLE PRECISION FORMAT 9

3.3.1 Machine Constants.. 10

3.3.2 Normalized and Denormalized Numbers .. 10
3.3.3 Nonfinite Numbers .. 10

4 LINEARALGEBRA CLASS METHODS... 11

4.1 MATRIX CREATION AND EXTRACTION .. 11

4.1.1 Create a Constant Matrix ... 11
4.1.2 Create a Random Matrix .. 11

4.1.3 Create an Identity Matrix .. 12
4.1.4 Create a Diagonal Matrix ... 12
4.1.5 Extract Diagonal Elements ... 12

4.1.6 Extract Row Elements ... 12
4.1.7 Extract Column Elements ... 12

4.1.8 Extract Rows ... 13
4.1.9 Extract Columns.. 13

4.2 MATRIX ADDITION, SUBTRACTION, MULTIPLICATION, AND TRANSPOSE OPERATIONS .. 13
4.2.1 Vector or Matrix Addition ... 14

4.2.2 Vector or Matrix Subtraction .. 14
4.2.3 Matrix Multiplication .. 14
4.2.4 Matrix Transpose Multiplication .. 15
4.2.5 Matrix Multiply Transpose ... 15

4.2.6 Transpose .. 15
4.3 SCALAR-VALUED FUNCTIONS ... 16

4.3.1 Vector Dot Product ... 16
4.3.2 1-Norm (Column Norm) .. 17

4.3.3 Infinity-Norm (Row Norm) .. 17
4.3.4 Frobenius-Norm .. 18
4.3.5 2-Norm (Spectral Norm) ... 18

4.3.6 Rank .. 19
4.3.7 Spectral Radius ... 20
4.3.8 Trace ... 20
4.3.9 1-Norm Inverse Condition Number Estimate ... 21
4.3.10 Infinity-Norm Inverse Condition Number Estimate .. 21
4.3.11 Determinant .. 22

4.4 FULL-RANK SQUARE LINEAR SYSTEM SOLVERS ... 22

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 3

4.4.1 System Solution ... 22
4.4.2 System Solution with Error Bounds .. 23

4.5 GENERAL LEAST-SQUARES SYSTEM SOLVERS .. 25
4.5.1 General Least-Squares System Solvers (via Orthogonal Factorizations) 25

4.5.2 General Least-Squares System Solvers (via SVD) .. 28
4.6 SINGULAR VALUE DECOMPOSITION .. 30

4.6.1 Singular Value Decomposition ... 31
4.6.2 Singular Values ... 32
4.6.3 Singular Values With Error Bound ... 32

4.6.4 Left Singular Vectors .. 33
4.6.5 Right Singular Vectors .. 34

4.7 EIGENVALUES AND EIGENVECTORS .. 34

4.7.1 Eigenvalues ... 35
4.7.2 Eigenvalues with Error Bounds .. 35
4.7.3 Eigenvalues and Right Eigenvectors .. 36

4.8 CHOLESKY FACTORIZATION .. 37
4.8.1 Upper and Lower Cholesky Factorizations .. 37

5 REFERENCES .. 39

6 LICENSE NOTICE ... 40

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 4

1 Ponderosa Computing Linear Algebra .NET Class Library

The C# programming language and .NET Framework provide one- and two-dimensional array

data types that are well suited to representing linear algebra vectors and matrices. The Ponderosa

Computing Linear Algebra .NET class library, PonderosaComputing.LinearAlgebra.dll,

provides linear algebra vector/matrix metrics and operations using one-dimensional and two-

dimensional, double-precision .NET array objects to represent column vectors and matrices,

respectively. These metrics and operations are implemented as LinearAlgebra class methods

using LAPACK algorithms.

LAPACK [1,2] is a freely-available, peer-reviewed computational linear algebra software library

that provides routines for solving systems of simultaneous linear equations, computing least-

squares solutions of linear systems of equations, and computing eigenvalue and singular value

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur,

generalized Schur) are also provided, as are related computations such as estimating condition

numbers. LAPACK has been used in or as a starting point for implementation of linear algebra

computing environments and is a standard by which other libraries and computing environments

are often compared.

The Ponderosa Computing Linear Algebra .NET class library provides selected LAPACK linear

algebra computations using the public-domain CLAPACK library from the Netlib Repository

[3,4]. The CLAPACK library is a machine-translation of the LAPACK Fortran library to C code.

The LinearAlgebra class methods are implemented using C++ Interop in C++/CLI to wrap the

CLAPACK functions so they can be accessed by code that is authored in C# or another .NET

Framework language [5].

This document describes version 1.2 of the Ponderosa Computing Linear Algebra .NET class

library. It was built using the Microsoft .NET Framework 4.5.2.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 5

2 How to Use this Class Library

We illustrate here how to use the Ponderosa Computing Linear Algebra .NET class library in a

C# project using Microsoft Visual Studio 2012.

The Ponderosa Computing Linear Algebra .NET class library installer installs by default the

class library DLL, PonderosaComputing.LinearAlgebra.dll, in the folder C:\Program Files

(x86)\Ponderosa Computing\LinearAlgebra.NET. If needed, the installer will also attempt to

install the .NET Framework 4.5.2 from the web.

To use the class methods of this class library first add a reference to the library in your Visual

Studio C# project:

1. In Visual Studio click the menu item “Project” and “Add Reference…”.

2. Click the “Browse…” button on the lower right and locate the file

PonderosaComputing.LinearAlgebra.dll. By default the installer installs this file in

C:\Program Files (x86)\Ponderosa Computing\LinearAlgebra.NET.

3. Click on the file name and click the “Add” button on the lower right of the file dialog.

4. Click the “OK” button.

Then create a PonderosaComputing.LinearAlgebra class instance and call the desired class

method through this instance. LinearAlgebraExceptions can also be caught.

Here is example C# code using this library:

using System;

using PonderosaComputing;

namespace PcLinAlgCLTest

{

 class Program

 {

 static void WriteVector(double[] Vec)

 {

 for (int i = 0; i < Vec.GetLength(0); ++i)

 {

 Console.Write("{0} ", Vec[i]);

 }

 Console.WriteLine();

 Console.WriteLine();

 }

 static void WriteMatrix(double[,] Mat)

 {

 for (int i = 0; i < Mat.GetLength(0); ++i)

 {

 for (int j = 0; j < Mat.GetLength(1); ++j)

 {

 Console.Write("{0} ", Mat[i, j]);

 }

 Console.WriteLine();

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 6

 }

 Console.WriteLine();

 }

 static void Main(string[] args)

 {

 LinearAlgebra la = new LinearAlgebra();

 // Exception thrown

 double[,] MS = {{1,2,4},{1,2,4},{1,2,4}};

 double[] v = {1,2,3};

 try

 {

 Console.WriteLine("*** Test error handling ***");

 Console.WriteLine("");

 Console.WriteLine("Singular matrix M");

 WriteMatrix(MS);

 Console.WriteLine("rank = {0}", la.Rank(MS));

 Console.WriteLine("determinant = {0}", la.Determinant(MS));

 Console.WriteLine();

 Console.WriteLine("vector v");

 WriteVector(v);

 Console.WriteLine("Matrix-vector product u = M * v");

 double[] u = la.Multiply(MS, v);

 WriteVector(u);

 Console.WriteLine("Try to solve M * x = u for x");

 Console.WriteLine("(Expect exception)");

 Console.WriteLine();

 double[] x = la.SolveFullRankLinearSystem(MS, u);

 Console.WriteLine("Expected not to reach here!");

 WriteVector(x);

 }

 catch (LinearAlgebraException e)

 {

 Console.WriteLine("Exception caught: {0}", e.Message);

 }

 finally

 {

 Console.WriteLine();

 }

 // metrics

 double[,] M33 = {{1,2,3},{1,4,9},{1,8,27}};

 double[,] M43 = {{1,2,3},{1,4,9},{1,8,27},{1,16,81}};

 try

 {

 Console.WriteLine("*** Solve full rank square system ***");

 Console.WriteLine("");

 Console.WriteLine("Full rank matrix M:");

 WriteMatrix(M33);

 Console.WriteLine("rank = {0}", la.Rank(M33));

 Console.WriteLine("determinant = {0}", la.Determinant(M33));

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 7

 Console.WriteLine();

 Console.WriteLine("vector v");

 WriteVector(v);

 Console.WriteLine("Matrix-vector product u = M * v");

 double[] u = la.Multiply(M33, v);

 WriteVector(u);

 Console.WriteLine("Solve M * x = u for x");

 double[] x = la.SolveFullRankLinearSystem(M33, u);

 WriteVector(x);

 Console.WriteLine("*** Solve overdetermined system ***");

 Console.WriteLine("");

 Console.WriteLine("matrix H:");

 WriteMatrix(M43);

 Console.WriteLine("rank = {0}", la.Rank(M43));

 Console.WriteLine("");

 Console.WriteLine("Matrix-vector product w = H * v");

 double[] w = la.Multiply(M43, v);

 WriteVector(w);

 Console.WriteLine("Solve H * y = w for y with error bound:");

 double[] ye = la.SolveLsqLinearSystemEB(M43, w);

 WriteVector(ye);

 }

 catch (LinearAlgebraException e)

 {

 Console.WriteLine("Exception caught: {0}", e.Message);

 }

 finally

 {

 Console.WriteLine();

 }

 Console.ReadLine();

 }

 }

}

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 8

3 Notation, Implementation, and Numerical Precision

3.1 Linear Algebra Notation

A linear algebra column vector is a one-dimensional array of elements consisting of numbers,

symbols, or expressions arranged in a column. A column vector of m elements consists of

elements 𝑥𝑖, where i is the row location of the element:

𝒙 = [

𝑥1

𝑥2

⋮
𝑥𝑚

] .

The Ponderosa Computing Linear Algebra .NET class library uses double-precision one-

dimensional .NET arrays to represent column vectors. A column vector can also be represented

by a double-precision two-dimensional .NET array object having one column.

A linear algebra row vector is a one-dimensional array of elements consisting of numbers,

symbols, or expressions arranged in a row. A row vector of n elements consists of elements 𝑦𝑖,

where i is the column location of the element:

𝒚 = [𝑦1 𝑦2 … 𝑦𝑛] .

This class library uses double-precision two-dimensional .NET arrays with one row to represent

row vectors.

A linear algebra matrix is a two-dimensional rectangular array of elements consisting of

numbers, symbols, or expressions arranged in rows and columns. A matrix of m rows and n

columns consists of elements 𝑥𝑖𝑗, where i is the row location and j is the column location of the

element:

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛

] .

This class library uses double-precision two-dimensional .NET arrays to represent matrices.

The transpose operation 𝒀 = 𝑿𝑻 on an m x n matrix X creates an n x m matrix Y with rows and

columns interchanged:

𝒀 = 𝑿𝑻 = [

𝑦11 𝑦12 ⋯ 𝑦1𝑚

𝑦21 𝑦22 ⋯ 𝑦2𝑚

⋮ ⋮ ⋱ ⋮
𝑦𝑛1 𝑦𝑛2 ⋯ 𝑦𝑛𝑚

] , 𝑤ℎ𝑒𝑟𝑒 𝑦𝑖𝑗 = 𝑥𝑗𝑖 .

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 9

The transpose operation 𝒚 = 𝒙𝑻 on an m-element column vector 𝒙 creates an m-element row

vector:

𝒙𝑇 = [

𝑥1

𝑥2

⋮
𝑥𝑚

]

𝑇

= [𝑥1 𝑥2 … 𝑥𝑚] .

This class library will return the transpose of a column vector as a row vector represented by a

double-precision two-dimensional .NET array with one row.

Numerical linear algebra operations are defined for matrices and vectors with all elements

defined on the domain of complex numbers ℂ. The Ponderosa Computing Linear Algebra .NET

class library provides linear algebra vector/matrix metrics and operations using double-precision

one-dimensional and two-dimensional .NET array objects to represent vector and matrix

arguments and return values. Since these array objects are declared as double-precision the

elements of these vectors and matrices are defined on the domain of real numbers ℝ = (-∞, +∞).

3.2 Library Uses the CLAPACK Implementation of LAPACK

LAPACK [1] is a freely-available, peer-reviewed numerical linear algebra software package that

provides routines for solving systems of simultaneous linear equations, computing least-squares

solutions of linear systems of equations, and computing eigenvalue and singular value

decompositions. The associated matrix factorizations (LU, Cholesky, LQ/QR, SVD, Schur,

generalized Schur) are also provided, as are related computations such as estimating condition

numbers.

The Netlib Repository provides a cross-platform Fortran source distribution of LAPACK [2] and

a C source distributions of CLAPACK [3]. Instructions and tools for building CLAPACK on the

Windows platform are available from the University of Tennessee Innovative Computing

Laboratory [4]. The Ponderosa Computing Linear Algebra .NET class library uses the

CLAPACK implementation of the LAPACK software package.

3.3 Library Computations use IEEE 754 Double Precision Format

The numerical linear algebra computations are all defined for matrix and vector elements defined

on the domain of real numbers ℝ = (-∞, +∞). To describe limiting behavior of linear algebra

computations it can be useful to define them for matrix and vector elements defined on the

domain of the affinely extended real numbers [-∞, +∞], which adds the elements +∞ (positive

infinity) and -∞ (negative infinity) to the real numbers.

The Ponderosa Computing Linear Algebra .NET class library implements its functions using the

double precision format defined by the IEEE Standard 754 for Binary Floating-Point Arithmetic

[6]. This format includes representations of signed zeros and normalized, denormalized, and

nonfinite (infinite and indeterminate) floating point numbers.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 10

3.3.1 Machine Constants

We define here some double precision constants that appear later in this document.

𝑒𝑝𝑠 : The relative machine precision, the distance from 1.0 to the next largest double-precision

number. This number is 𝑒𝑝𝑠 = dlamch_(P) = 2−52 = 2.2204460492503131𝑒 − 016.

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 : The minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛 does not overflow.

𝑠𝑎𝑓𝑒𝑚𝑖𝑛 = dlamch_(S) = 2.2250738585072014𝑒 − 308.

3.3.2 Normalized and Denormalized Numbers

The Ponderosa Computing Linear Algebra .NET class library supports normalized IEEE 754

double precision numbers with 53 binary digits of precision (equivalent to nearly 16 decimal

digits of precision).

The library also supports IEEE 754 denormalized numbers. As an example, for the matrix

𝑨 = [
1𝐸 − 160 0

0 1𝐸 − 160
] ,

the class method LinearAlgebra.Determinant() returns the denormalized value

9.99988867182683E-321.

3.3.3 Nonfinite Numbers

The CLAPACK implementation does not reliably handle nonfinite (infinite and indeterminate)

floating point matrix or vector elements. For example, some computational loops are skipped

when a factor is zero under the assumption that the skipped loop would have no impact on the

computed results [7]. But this may fail to propagate nonfinite values or fail to detect invalid

operations.

Version 1.2 of the Ponderosa Computing Linear Algebra .NET class library does not provide

special handling of nonfinite floating point matrix or vector elements, and its class methods

might not provide reliable results for method arguments containing such elements.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 11

4 LinearAlgebra Class Methods

The Ponderosa Computing Linear Algebra .NET class library implements its functions using

version 3.2.1 of CLAPACK [3]. This implementation of CLAPACK was machine translated by

Netlib from Fortran 77 to ANSI C using the f2c tool and version 3.2.1 of LAPACK [2]. The

Ponderosa Computing Linear Algebra .NET class library uses the reference BLAS library

included with this CLAPACK distribution.

4.1 Matrix Creation and Extraction

The Ponderosa Computing Linear Algebra .NET class library provides the following class

methods for creating matrices and extracting the diagonals of a matrix:

Create a constant matrix GenerateConstant()

Create a random matrix GenerateRandom()

Create an identity matrix GenerateIdentity()

Create a diagonal matrix GenerateDiagonal()

Extract the diagonal elements of a matrix ExtractDiagonals()

Extract a row vector from a matrix ExtractRow()

Extract a column vector from a matrix ExtractColumn()

Extract rows from a matrix ExtractRows()

Extract columns from a matrix ExtractColumns()

4.1.1 Create a Constant Matrix

The class method

 LinearAlgebra.GenerateConstant(m,n,value)

returns an m x n matrix with entries all equal to value. If m < 1 or n < 1 then this method throws

an eBadParamError LinearAlgebraException.

4.1.2 Create a Random Matrix

The class method

 LinearAlgebra.GenerateRandom(m,n,minimum,maximum)

returns an m x n matrix with random entries in [minimum, maximum). If m < 1 or n < 1 or

maximum < minimum then this method throws an eBadParamError LinearAlgebraException.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 12

This class method generates uniformly distributed random elements in the interval [minimum,

maximum] using a Mersenne Twister pseudo-random generator of 32-bit numbers with a state

size of 19937 bits provided by the C++11 standard library. This generator is initialized when the

PonderosaComputing.LinearAlgebra class instance is constructed and a class method is first

invoked through this instance.

4.1.3 Create an Identity Matrix

The class method

 LinearAlgebra.GenerateIdentity(n)

returns an n x n identity matrix, 𝑰𝒏 , of order n. If n < 1 then this method throws an

eBadParamError LinearAlgebraException.

4.1.4 Create a Diagonal Matrix

The class method

 LinearAlgebra.GenerateDiagonal(d)

returns an n x n diagonal matrix 𝑫 where n is the size of the argument vector 𝒅 containing the

diagonal elements of the returned diagonal matrix.

4.1.5 Extract Diagonal Elements

The class method

 LinearAlgebra.ExtractDiagonals(A)

returns the min(m, n) main diagonal elements of an m x n matrix 𝑨 as a min(m, n)-element

vector.

4.1.6 Extract Row Elements

The class method

 LinearAlgebra.ExtractRow(A,r)

returns the n elements of the r-th row of an m x n matrix 𝑨 as a n-element column vector 𝒗. The

row number r is base 0. If r < 0 or r ≥ m then this method throws an eBadParamError

LinearAlgebraException.

4.1.7 Extract Column Elements

The class method

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 13

 LinearAlgebra.ExtractColumn(A,c)

returns the m elements of the c-th column of an m x n matrix 𝑨 as an m-element vector 𝒗. The

column number c is base 0. If c < 0 or c ≥ n then this method throws an eBadParamError

LinearAlgebraException.

4.1.8 Extract Rows

The class method

 LinearAlgebra.ExtractRows(A,r1,r2)

returns the rows r1 through r2 of an m x n matrix 𝑨 as a (r2-r1+1) x n matrix. The row numbers r1

and r2 are base 0. If r1 < 0 or r1 > r2 or r2 ≥ m then this method throws an eBadParamError

LinearAlgebraException.

4.1.9 Extract Columns

The class method

 LinearAlgebra.ExtractColumns(A,c1,c2)

returns the columns c1 through c2 of an m x n matrix 𝑨 as a m x (c2-c1+1) matrix. The column

numbers c1 and c2 are base 0. If c1 < 0 or c1 > c2 or c2 ≥ m then this method throws an

eBadParamError LinearAlgebraException.

4.2 Matrix Addition, Subtraction, Multiplication, and Transpose
Operations

The Ponderosa Computing Linear Algebra .NET class library provides the following class

methods for vector and matrix addition and subtraction and for matrix multiplication and

transpose operations:

Vector or Matrix addition Add()

Vector or Matrix subtraction Subtract()

Matrix multiplication Multiply()

Matrix transpose multiplication TransposeMultiply()

Matrix multiply transpose MultiplyTranspose()

Transpose Transpose()

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 14

4.2.1 Vector or Matrix Addition

The class method

 LinearAlgebra.Add(a,b)

returns the element-wise sum of n-element column vectors 𝒂 and 𝒃 as an n-element column

vector 𝒄 = 𝒂 + 𝒃. If the number of elements of 𝒂 does not match the number of elements of 𝒃

then this method throws an eBadParamError LinearAlgebraException.

The class method

 LinearAlgebra.Add(A,B)

returns the element-wise sum of m x n matrices 𝑨 and 𝑩 as an m x n matrix 𝑪 = 𝑨 + 𝑩. If the

number of rows and columns of 𝑨 do not match the number of rows and columns of 𝑩 then this

method throws an eBadParamError LinearAlgebraException.

4.2.2 Vector or Matrix Subtraction

The class method

 LinearAlgebra.Subtract(a,b)

returns the element-wise difference of n-element column vectors 𝒂 and 𝒃 as an n-element

column vector 𝒄 = 𝒂 − 𝒃. If the number of elements of 𝒂 does not match the number of

elements of 𝒃 then this method throws an eBadParamError LinearAlgebraException.

The class method

 LinearAlgebra.Subtract(A,B)

returns the element-wise difference of m x n matrices 𝑨 and 𝑩 as an m x n matrix 𝑪 = 𝑨 − 𝑩. If

the number of rows and columns of 𝑨 do not match the number of rows and columns of 𝑩 then

this method throws an eBadParamError LinearAlgebraException.

4.2.3 Matrix Multiplication

The class method

 LinearAlgebra.Multiply(A,b)

returns the product of an m x n matrix 𝑨 and a n-element column vector 𝒃 as an m-element

column vector 𝒗 = 𝑨 𝒃. If the number of columns of 𝑨 does not match the number of elements

of 𝒃 then this method throws an eBadParamError LinearAlgebraException.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 15

The class method

 LinearAlgebra.Multiply(A,B)

returns the product of an m x n matrix 𝑨 and a n x p matrix 𝑩 as an m x p matrix 𝑪 = 𝑨 𝑩. If the

number of columns of 𝑨 does not match the number of rows of 𝑩 then this method throws an

eBadParamError LinearAlgebraException.

These methods compute the matrix product using routine dgemm_() from the CLAPACK v

3.2.1 BLAS package.

4.2.4 Matrix Transpose Multiplication

The class method

 LinearAlgebra.TransposeMultiply(A,b)

returns the product of the transpose of an n x m matrix 𝑨 and a n-element column vector 𝒃 as an

m-element column vector 𝒗 = 𝑨𝑇𝒃. If the number of rows of 𝑨 does not match the number of

elements of 𝒃 then this method throws an eBadParamError LinearAlgebraException.

The class method

 LinearAlgebra.TransposeMultiply(A,B)

returns the product of an m x n matrix 𝑨 and a n x p matrix 𝑩 as an m x p matrix 𝑪 = 𝑨𝑇𝑩. If
the number of columns of 𝑨 does not match the number of rows of 𝑩 then this method throws an

eBadParamError LinearAlgebraException.

These methods use routine dgemm_() from the CLAPACK v 3.2.1 BLAS package.

4.2.5 Matrix Multiply Transpose

The class method

 LinearAlgebra.MultiplyTranspose(A,B)

returns the product of an m x n matrix 𝑨 and the transpose of a p x n matrix 𝑩 as an m x p matrix

𝑪 = 𝑨 𝑩𝑇 . If the number of columns of 𝑨 does not match the number of columns of 𝑩 then this

method throws an eBadParamError LinearAlgebraException.

This method uses routine dgemm_() from the CLAPACK v 3.2.1 BLAS package.

4.2.6 Transpose

The class method

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 16

 LinearAlgebra.Transpose(v)

returns the transpose of an m-element column vector 𝒗 as the 1 x m matrix representing the row

vector 𝒖 = 𝒗𝑇 .

The class method

 LinearAlgebra.Transpose(A)

returns the transpose of an m x n matrix 𝑨 as the n x m matrix 𝑨𝑇 .

4.3 Scalar-Valued Functions

The Ponderosa Computing Linear Algebra .NET class library provides the following scalar-

valued vector and matrix methods:

Vector dot product Dot()

1-norm (column norm) of a vector or

matrix

OneNorm()

Infinity-norm (row norm) of a vector or

matrix

InfinityNorm()

Frobenius norm of a vector or matrix FrobeniusNorm()

2-norm (spectral norm) of a vector or

matrix

TwoNorm()

Rank of a matrix Rank()

Spectral radius of a symmetric matrix SpectralRadius()

Trace of a square matrix Trace()

1-norm inverse condition number

estimate of a square matrix

InverseOneNormConditionNumberEstimate()

Infinity-norm inverse condition number

estimate of a square matrix

InverseInfinityNormConditionNumberEstimate()

Determinant of a square matrix Determinant()

4.3.1 Vector Dot Product

The class method

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 17

 LinearAlgebra.Dot(u,v)

returns the dot product of two n-element column vectors 𝒖 and 𝒗. This is the sum of the products

of the corresponding elements of 𝒖 and 𝒗:

𝑢 · 𝑣 =∑𝑢𝑖 ∗ 𝑣𝑖

𝑛

𝑖=1

These methods compute the dot product using routine ddot_() from the CLAPACK v 3.2.1

BLAS package.

4.3.2 1-Norm (Column Norm)

The class methods

 LinearAlgebra.OneNorm(A)

 LinearAlgebra.OneNorm(v)

return the 1-norm (column norm, ‖𝑨‖1 , ‖𝒗‖1) of a matrix 𝑨 or column vector 𝒗, respectively.

This is the maximum absolute column sum of the elements of an m x n matrix 𝑨:

 ‖𝑨‖1 = max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

It is the absolute column sum of the elements of an n element column vector 𝒗:

 ‖𝒗‖1 =∑|𝑣𝑖|

𝑛

𝑖=1

This method computes the 1-norm using the routine dlange_() from CLAPACK v 3.2.1.

4.3.3 Infinity-Norm (Row Norm)

The class methods

 LinearAlgebra.InfinityNorm(A)

 LinearAlgebra.InfinityNorm(v)

return the infinity-norm (row norm, ‖𝑨‖∞ , ‖𝒗‖∞) of a matrix 𝑨 or column vector 𝒗,

respectively.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 18

This is the maximum absolute row sum of the elements of an m x n matrix 𝑨:

 ‖𝑨‖∞ = max
1≤𝑖≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑗=1

It is the maximum absolute value of the elements of an n element column vector 𝒗:

 ‖𝒗‖∞ = max
1≤𝑖≤𝑛

|𝑣𝑖|

This method computes the infinity-norm using routine dlange_() from CLAPACK v 3.2.1.

4.3.4 Frobenius-Norm

The class methods

 LinearAlgebra.ForbeniusNorm(A)

 LinearAlgebra.ForbeniusNorm(v)

return the Frobenius-norm (‖𝑨‖𝐹 , ‖𝒗‖𝐹) of a matrix 𝑨 or vector 𝒗, respectively.

This is the square root of the sum of absolute squares (root mean square) of the elements of an m

x n matrix 𝑨:

 ‖𝑨‖𝐹 = √∑∑|𝑎𝑖𝑗|
2

𝑛

𝑗=1

𝑚

𝑖=1

It is the square root of the sum of absolute squares (root mean square) of the elements of an n

vector 𝒗:

 ‖𝒗‖𝐹 = √∑|𝑣𝑖|2
𝑛

𝑖=1

This method computes the Frobenius norm using routine dlange_() from CLAPACK v 3.2.1.

4.3.5 2-Norm (Spectral Norm)

The class methods

 LinearAlgebra.TwoNorm(A)

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 19

 LinearAlgebra.TwoNorm(v)

return the 2-norm (spectral norm, ‖𝑨‖2 , ‖𝒗‖2) of a matrix 𝑨 or column vector 𝒗, respectively.

This is the largest singular value of an m x n matrix 𝑨:

‖𝑨‖2 = 𝜎max (𝑨) .

It is the square root of the sum of absolute squares (root mean square) of the elements of an n

vector 𝒗:

 ‖𝒗‖𝐹 = √∑|𝑣𝑖|2
𝑛

𝑖=1

This method computes the min(m, n) singular values of a m x n matrix 𝑨 using routine

dgesvd_() from CLAPACK v 3.2.1.

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find

all the singular values of 𝑨 then this method throws an eInternalError LinearAlgebraException.

This method computes the 2-norm of a vector using routine dlange_() from CLAPACK v

3.2.1.

4.3.6 Rank

The column rank of an m x n matrix 𝑨 is the maximum number of linearly independent column

vectors of A. The row rank of an m x n matrix 𝑨 is the maximum number of linearly

independent row vectors of 𝑨. The column rank and the row rank are equal, and this is called the

rank of the matrix 𝑨. The rank of an m x n matrix 𝑨 is also the number of nonzero singular

values of 𝑨.

The class method

 LinearAlgebra.Rank(A)

returns the rank of a m x n matrix 𝑨. This method computes the min(m, n) singular values of 𝑨

using routine dgesvd_() from CLAPACK v 3.2.1. The rank is then determined as the number

of computed singular values that are significantly greater than zero.

The Ponderosa Computing Linear Algebra .NET class library uses the threshold value

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = max (𝑠𝑓𝑚𝑖𝑛 , max (𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ 𝜎max (𝑨)) .

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 20

A computed singular value is considered significantly greater than zero if it exceeds this

threshold. Here 𝑠𝑎𝑓𝑒𝑚𝑖𝑛 is the minimum positive floating point value such that 1/𝑠𝑎𝑓𝑒𝑚𝑖𝑛

does not overflow, 𝑒𝑝𝑠 is the relative machine precision, and 𝜎max (𝑨) is the largest singular

value of 𝑨.

Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper or

lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to find

all the singular values of 𝑨 then this method throws an eInternalError LinearAlgebraException.

4.3.7 Spectral Radius

Let 𝜆1, 𝜆2, ... , 𝜆𝑛 be the (real) eigenvalues of an n x n symmetric (real) matrix 𝑨. Then the

spectral radius of 𝑨 is:

𝜌(𝑨) = max𝑖(|𝜆𝑖|) .

The class method

 LinearAlgebra.SpectralRadius(A)

returns the spectral radius of a symmetric matrix 𝑨. If 𝑨 is not symmetric then this method

throws an eBadParamError LinearAlgebraException.

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1.

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method

throws an eInternalError LinearAlgebraException.

4.3.8 Trace

The trace of an n x n matrix 𝑨 is the sum of the main diagonal elements of 𝑨:

𝑡𝑟(𝑨) = ∑𝑎𝑖𝑖

𝑛

𝑖=1

The class method

 LinearAlgebra.Trace(A)

returns the trace of a square matrix 𝑨 directly from its definition. If 𝑨 is not square then this

method throws an eBadParamError LinearAlgebraException.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 21

4.3.9 1-Norm Inverse Condition Number Estimate

The class method

 LinearAlgebra.InverseOneNormConditionNumberEstimate(A)

returns the inverse of a 1-norm condition number estimate of a square matrix 𝑨. If 𝑨 is not

square this method throws an eBadParamError LinearAlgebraException.

This method starts by computing ‖𝑨‖1 using routine dlange_() from CLAPACK v 3.2.1 and

returns zero if ‖𝑨‖1 = 0.

This method then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU

factorization 𝑨 = 𝑷 𝑳 𝑼 using partial pivoting with row interchanges. If routine dgetrf_()
determines the matrix 𝑨 is exactly singular then this method returns 0.

Otherwise, this method estimates ‖𝑨−𝟏‖
1
 using the LU factorization and routine dgecon_()

from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
1
 estimate is zero. Otherwise this method

returns the inverse condition number estimate

𝑐 =
1

‖𝑨‖1‖𝑨−𝟏‖1

LinearAlgebra.InverseOneNormConditionNumberEstimate() returns the

inverse of the 1-norm condition number estimate of a matrix, rather than the condition number

estimate of the matrix, itself, to provide a zero return value for singular matrices.

4.3.10 Infinity-Norm Inverse Condition Number Estimate

The class method

 LinearAlgebra.InverseInfinityNormConditionNumberEstimate(A)

returns the inverse of an infinity-norm condition number estimate of a square matrix 𝑨. If 𝑨 is

not square this method throws an eBadParamError LinearAlgebraException.

This method starts by computing ‖𝑨‖∞ using routine dlange_() from CLAPACK v 3.2.1 and

returns zero if ‖𝑨‖∞ = 0.

This method then uses routine dgetrf_() from CLAPACK v 3.2.1 to compute the LU

factorization 𝑨 = 𝑷 𝑳 𝑼 using partial pivoting with row interchanges. If routine

dgetrf_()determines the matrix 𝑨 is exactly singular then this method returns 0.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 22

Otherwise, This method estimates ‖𝑨−𝟏‖
∞

 using the LU factorization and routine dgecon_()

from CLAPACK v 3.2.1 and returns zero if the ‖𝑨−𝟏‖
∞

 estimate is zero. Otherwise This method

returns the inverse condition number estimate

𝑐 =
1

‖𝑨‖∞‖𝑨−𝟏‖∞

LinearAlgebra.InverseInfinityNormConditionNumberEstimate() returns

the inverse of the infinity-norm condition number estimate of a matrix, rather than the condition

number estimate of the matrix, itself, to provide a zero return value for singular matrices.

4.3.11 Determinant

The class method

 LinearAlgebra.Determinant(A)

returns the determinant of a square matrix 𝑨. If 𝑨 is not square then this method throws an

eBadParamError LinearAlgebraException.

This method computes the determinant of 𝑨 by using routine dgetrf_() from CLAPACK v

3.2.1 to compute the LU factorization 𝑨 = 𝑷 𝑳 𝑼 using partial pivoting with row interchanges. If

routine dgetrf_()determines the matrix 𝑨 is exactly singular then this method returns 0.

Otherwise, This method accumulates the product of the diagonal entries of 𝑼 with sign

adjustment according to pivot row interchanges and scaling to avoid intermediate overflow.

4.4 Full-Rank Square Linear System Solvers

The Ponderosa Computing Linear Algebra .NET class library provides the following full-rank

square linear system solver methods:

Full rank square system solvers SolveFullRankLinearSystem()

SolveFullRankLinearSystemEB()

4.4.1 System Solution

The class method

 LinearAlgebra. SolveFullRankLinearSystem(A,b)

returns the solution vector 𝒙 to a full-rank real linear system:

𝑨 𝒙 = 𝒃

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 23

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝒃 is a n-

element column vector. The solution vector 𝒙 is a n-element column vector. If 𝑨 is not square or

if vector 𝒃 does not have n elements this method throws an eBadParamError

LinearAlgebraException.

The class method

 LinearAlgebra. SolveFullRankLinearSystem(A,B)

returns the solution matrix 𝑿 to a full-rank real linear system:

𝑨 𝑿 = 𝑩

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝑩 is a n x p

matrix. The solution matrix 𝑿 is n x p. If 𝑨 is not square or if matrix 𝑩 does not have n rows this

method throws an eBadParamError LinearAlgebraException.

These methods compute the solution matrix 𝑿 by using routine dgesvx_() from CLAPACK v

3.2.1, using equilibration and iterative refinement as needed. If routine dgesvx_()determines

the matrix 𝑨 is exactly singular then these methods throw an eInternalError

LinearAlgebraException.

4.4.2 System Solution with Error Bounds

The class method

 LinearAlgebra. SolveFullRankLinearSystemEB(A,b)

returns the solution vector 𝒙 and forward error bound estimate e to a full-rank real linear system:

𝑨 𝒙 = 𝒃

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝒃 is a n-

element column vector. The solution vector 𝒙 is a n-element column vector and the forward error

bound estimate e is a scalar. If 𝑨 is not square or if vector 𝒃 does not have n elements this

method throws an eBadParamError LinearAlgebraException.

The computed solution vector 𝒙 is returned as the first n elements of a (n+1)-element augmented

solution vector 𝒙𝑨. The forward error bound estimate e is returned as the last element of 𝒙𝑨.

𝒙𝑨 =

[

𝑥1

𝑥2

⋮
𝑥𝑛

𝑒]

 .

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 24

The forward error bound estimate e bounds the relative error in the computed solution. If 𝒙 is the

computed solution and 𝒙𝒕 is the true solution, then the relative error is bounded by:

‖𝒙 − 𝒙𝒕‖∞

‖𝒙‖∞
≤ 𝑒

That is, e is an estimated upper bound for the magnitude of the largest element in 𝒙 − 𝒙𝒕 divided

by the magnitude of the largest element in 𝒙. This estimate is almost always a slight overestimate

of the true error.

The class method

 LinearAlgebra. SolveFullRankLinearSystemEB(A,B)

returns the solution matrix 𝑿 and forward error bound estimates e to a full-rank real linear

system:

𝑨 𝑿 = 𝑩

using equilibration and iterative refinement as needed. Here 𝑨 is an n x n matrix and 𝑩 is a n x p

matrix. The solution matrix 𝑿 is n x p and the forward error bound estimates e is a row vector. If

𝑨 is not square or if matrix 𝑩 does not have n rows this method throws an eBadParamError

LinearAlgebraException.

The computed matrix solution 𝑿 is returned as the first n rows of a (n+1) x p augmented solution

matrix 𝑿𝑨. The forward error bound estimate row vector e is returned as the last row of 𝑿𝑨.

𝑿𝑨 =

[

𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝]

 .

For each column j of the augmented solution matrix, the forward error bound estimate 𝑒𝑗 bounds

the relative error in the computed solution column 𝒙𝒋. If 𝒙𝒋 is the computed solution column and

𝒙𝒋𝒕 is the true solution column, then the relative error for that column is bounded by:

‖𝒙𝒋 − 𝒙𝒋𝒕‖∞

‖𝒙𝒋‖∞

≤ 𝑒𝑗

That is, 𝑒𝑗 is an estimated upper bound for the magnitude of the largest element in 𝒙𝒋 − 𝒙𝒋𝒕

divided by the magnitude of the largest element in 𝒙𝒋. This estimate is almost always a slight

overestimate of the true error.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 25

These methods compute the augmented solution matrix 𝑿 by using routine dgesvx_() from

CLAPACK v 3.2.1, using equilibration and iterative refinement as needed. If routine

dgesvx_()determines the matrix 𝑨 is exactly singular then these methods throw an

eInternalError LinearAlgebraException.

4.5 General Least-Squares System Solvers

The Ponderosa Computing Linear Algebra .NET class library provides the following real linear

least squares system solver methods:

General least-squares system solvers (via LQ/QR) SolveLsqLinearSystem()

SolveLsqLinearSystemEB()

General least-squares system solvers (via SVD) SolveLsqLinearSystemSvd()

SolveLsqLinearSystemSvdEB()

4.5.1 General Least-Squares System Solvers (via Orthogonal Factorizations)

4.5.1.1 System Solution

The class method

 LinearAlgebra.SolveLsqLinearSystem(A,b)

returns the minimum-norm solution vector 𝒙 to a real linear least squares system:

𝐦𝐢𝐧𝒙‖𝒃 − 𝑨𝒙‖𝟐 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 .

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector.

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm

residual. This method uses a complete orthogonal factorization of 𝑨. If the number of rows of 𝑨

does not match the number of elements of 𝒃 then this method throws an eBadParamError

LinearAlgebraException.

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved in a

single method call. The p right hand side m-element column vectors 𝒃𝒋 for the least squares

systems:

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 − 𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝

are stored as the columns of a m x p matrix 𝑩.

The class method:

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 26

 LinearAlgebra.SolveLsqLinearSystem(A,B)

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the n x p solution matrix 𝑿. If the number of rows of 𝑨 does not match the number

of rows of 𝑩 then this method throws an eBadParamError LinearAlgebraException.

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelsy_() from

CLAPACK v 3.2.1. This routine first computes a QR factorization of 𝑨 with column pivoting. It

then determines the effective rank r of 𝑨 and then refactors a reduced system into an r x r

triangular system which is then solved. If routine dgelsy_()determines the matrix 𝑨 has

effective rank 0 then these methods return the zero solution vector 𝒙 or matrix 𝑿.

4.5.1.2 System Solution with Error Bounds

The class method

 LinearAlgebra.SolveLsqLinearSystemEB(A,b)

returns the minimum-norm solution vector x and forward error bound estimate e to a real linear

least squares system:

𝐦𝐢𝐧𝒙‖𝒃 − 𝑨𝒙‖𝟐 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 .

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector.

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm

residual. The forward error bound estimate e is a scalar. This method uses a complete orthogonal

factorization of 𝑨. If the number of rows of 𝑨 does not match the number of elements of 𝒃 then

this method throws an eBadParamError LinearAlgebraException.

The computed solution vector x is returned as the first n elements of a (n+1)-element augmented

solution vector 𝒙𝑨. If the matrix 𝑨 has m ≥ n (we have an overdetermined system) with full

column rank then this method also returns a forward error bound estimate e as the last element of

xA. Otherwise this method returns the value -1 as the last element of 𝒙𝑨.

𝒙𝑨 =

[

𝑥1

𝑥2

⋮
𝑥𝑛

𝑒]

 .

The forward error bound estimate e bounds the relative error in the computed solution. If 𝒙 is the

computed solution and 𝒙𝒕 is the true solution, then the relative error is bounded by:

‖𝒙 − 𝒙𝒕‖2

‖𝒙𝒕‖2
≤ 𝑒

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 27

That is, e is an estimated upper bound for the root mean square of 𝒙 − 𝒙𝒕 divided by the root

mean square of 𝒙𝒕. This estimate is almost always a slight overestimate of the true error.

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved with

forward error bound estimates in a single method call. The p right hand side m-element column

vectors bj for the least squares systems:

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 − 𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝

are stored as the columns of a m x p matrix 𝑩.

The class method:

 LinearAlgebra.SolveLsqLinearSystemEB(A,B)

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the first n rows of the augmented (n+1) x p augmented solution matrix 𝑿𝑨. If the

matrix 𝑨 has m ≥ n (we have an overdetermined system) with full column rank then this method

also returns a forward error bound estimate ej returned as the last element of column j of 𝑿𝑨.

Otherwise this method returns the value -1 as the last element of column j of 𝑿𝑨.

𝑿𝑨 =

[

𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝]

 .

If the number of rows of 𝑨 does not match the number of rows of 𝑩 then this method throws an

eBadParamError LinearAlgebraException.

For each computed solution vector 𝒙𝒋, the forward error bound estimate ej bounds the relative

error in the solution 𝒙𝒋. If 𝒙𝒋 is the computed solution vector and 𝒙𝒋𝒕 is the true solution vector,

then the relative error for that solution vector is bounded by:

‖𝒙𝒋 − 𝒙𝒋𝒕‖2

‖𝒙𝒋𝒕‖2

≤ 𝑒

That is, ej is an estimated upper bound for the root mean square of 𝒙𝒋 − 𝒙𝒋𝒕 divided by the root

mean square of 𝒙𝒋𝒕. This estimate is almost always a slight overestimate of the true error.

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelsy_() from

CLAPACK v 3.2.1. This routine first computes a QR factorization of 𝑨 with column pivoting. It

then determines the effective rank r of 𝑨 and then refactors a reduced system into an r x r

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 28

triangular system which is then solved. If routine dgelsy_()determines the matrix 𝑨 has

effective rank 0 then these methods return the zero solution vector 𝒙 or matrix 𝑿.

The error bounds for the full column rank overdetermined case are computed in the manner

described here: http://www.netlib.org/lapack/lug/node82.html.

4.5.2 General Least-Squares System Solvers (via SVD)

4.5.2.1 System Solution

The class method

 LinearAlgebra.SolveSvdLinearSystem(A,b)

returns the minimum-norm solution vector 𝒙 to a real linear least squares system:

𝐦𝐢𝐧𝒙‖𝒃 − 𝑨𝒙‖𝟐 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 .

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector.

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm

residual. This method uses the singular value decomposition of 𝑨. If the number of rows of 𝑨

does not match the number of elements of 𝒃 then this method throws an eBadParamError

LinearAlgebraException.

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved in a

single method call. The p right hand side m-element column vectors 𝒃𝒋 for the least squares

systems:

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 − 𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝

are stored as the columns of a m x p matrix 𝑩.

The class method:

 LinearAlgebra.SolveLsqLinearSystem(A,B)

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the n x p solution matrix 𝑿. If the number of rows of 𝑨 does not match the number

of rows of 𝑩 then this method throws an eBadParamError LinearAlgebraException.

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelss_() from

CLAPACK v 3.2.1. This routine first computes the singular value decomposition of 𝑨. It then

determines the effective rank r of 𝑨, zeros out the insignificant portion of the SVD, and solves

the reduced system. If routine dgelss_()determines the matrix 𝑨 has effective rank 0 then

these methods return the zero solution vector 𝒙 or matrix 𝑿.

http://www.netlib.org/lapack/lug/node82.html

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 29

4.5.2.2 System Solution with Error Bounds

The class method

 LinearAlgebra.SolveSvdLinearSystemEB(A,b)

returns the minimum-norm solution vector 𝒙 and forward error bound estimate e to a real linear

least squares system:

𝐦𝐢𝐧𝒙‖𝒃 − 𝑨𝒙‖𝟐 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙‖2 .

Here 𝑨 is an m x n matrix which may be rank-deficient and 𝒃 is an m-element column vector.

The solution is the minimum-2-norm n-element column vector 𝒙 achieving the minimum 2-norm

residual. The forward error bound estimate e is a scalar. This method uses the singular value

decomposition of 𝑨. If the number of rows of 𝑨 does not match the number of elements of 𝒃 then

this method throws an eBadParamError LinearAlgebraException.

The computed solution vector 𝒙 is returned as the first n elements of a (n+1)-element augmented

solution vector 𝒙𝑨. If the matrix 𝑨 has m ≥ n (we have an overdetermined system) with full

column rank then this method also returns a forward error bound estimate e as the last element of

𝒙𝑨. Otherwise this method returns the value -1 as the last element of 𝒙𝑨.

𝒙𝑨 =

[

𝑥1

𝑥2

⋮
𝑥𝑛

𝑒]

 .

The forward error bound estimate e bounds the relative error in the computed solution. If 𝒙 is the

computed solution and 𝒙𝒕 is the true solution, then the relative error is bounded by:

‖𝒙 − 𝒙𝒕‖2

‖𝒙𝒕‖2
≤ 𝑒

That is, e is an estimated upper bound for the root mean square of 𝒙 − 𝒙𝒕 divided by the root

mean square of 𝒙𝒕. This estimate is almost always a slight overestimate of the true error.

Multiple real linear least squares systems sharing the same system matrix 𝑨 can be solved with

forward error bound estimates in a single method call. The p right hand side m-element column

vectors 𝒃𝒋 for the least squares systems:

𝐦𝐢𝐧
𝒙

‖𝒃𝒋 − 𝑨𝒙𝒋‖𝟐
 , 𝑤𝑖𝑡ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ‖𝒙𝒋‖2

, 𝑗 = 1…𝑝

are stored as the columns of a m x p matrix 𝑩.

The class method:

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 30

 LinearAlgebra.SolveSvdLinearSystemEB(A,B)

returns the minimum-norm solution vector 𝒙𝒋 for the j-th real linear least squares system as the j-

th column of the first n rows of the augmented (n+1) x p augmented solution matrix 𝑿𝑨. If the

matrix 𝑨 has m ≥ n (we have an overdetermined system) with full column rank then this method

also returns a forward error bound estimate ej returned as the last element of column j of 𝑿𝑨.

Otherwise this method returns the value -1 as the last element of column j of 𝑿𝑨.

𝑿𝑨 =

[

𝑥11 𝑥12 ⋯ 𝑥1𝑝

𝑥21 𝑥22 ⋯ 𝑥2𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑝

𝑒1 𝑒2 ⋯ 𝑒𝑝]

 .

If the number of rows of 𝑨 does not match the number of rows of 𝑩 then this method throws an

eBadParamError LinearAlgebraException.

For each computed solution vector 𝒙𝒋, the forward error bound estimate ej bounds the relative

error in the solution 𝒙𝒋. If 𝒙𝒋 is the computed solution vector and 𝒙𝒋𝒕 is the true solution vector,

then the relative error for that solution vector is bounded by:

‖𝒙𝒋 − 𝒙𝒋𝒕‖2

‖𝒙𝒋𝒕‖2

≤ 𝑒

That is, ej is an estimated upper bound for the root mean square of 𝒙𝒋 − 𝒙𝒋𝒕 divided by the root

mean square of 𝒙𝒋𝒕. This estimate is almost always a slight overestimate of the true error.

These methods compute the solution vector 𝒙 and matrix 𝑿 by using routine dgelss_() from

CLAPACK v 3.2.1. This routine first computes the singular value decomposition of 𝑨. It then

determines the effective rank r of 𝑨, zeros out the insignificant portion of the SVD, and solves

the reduced system. If routine dgelss_()determines the matrix 𝑨 has effective rank 0 then

these methods return the zero solution vector 𝒙 or matrix 𝑿.

The error bounds for the full column rank overdetermined case are computed in the manner

described here: http://www.netlib.org/lapack/lug/node82.html.

4.6 Singular Value Decomposition

The singular value decomposition of an m x n (real) matrix 𝑨 is a factorization of 𝑨 into the

form:

𝑨 = 𝑼 𝜮 𝑽𝑇

http://www.netlib.org/lapack/lug/node82.html

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 31

where 𝑼 is a m x m matrix, 𝑽𝑇 is an n x n matrix, and 𝜮 is a m x n rectangular diagonal matrix

with p = min(m,n) nonnegative entries on the main diagonal.

The nonnegative diagonal entries of 𝜮 are the singular values of 𝑨 , {𝜎1, 𝜎2, … 𝜎min (𝑚,𝑛)} ,

arranged in descending order: 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎min (𝑚,𝑛) ≥ 0 .

The matrices 𝑼 and 𝑽 are orthonormal:

 𝑼𝑇𝑼 = 𝑼 𝑼𝑇 = 𝑰𝒎 , 𝑽𝑇𝑽 = 𝑽 𝑽𝑇 = 𝑰𝒏 ,

where 𝑰𝒎 and 𝑰𝒏 denote the identity matrices of order m and n, respectively. The m columns of

𝑼, {𝒖1, 𝒖2, …𝒖𝑚}, are called the left singular vectors of 𝑨 . The n columns of 𝑽, {𝒗1, 𝒗2, … 𝒗𝑛},
are called the right singular vectors of 𝑨 .

Since 𝜮 is a m x n rectangular diagonal matrix with p = min(m,n), the singular value

decomposition can be represented as the thin singular value decomposition:

𝑨 = 𝑼𝒑 𝜮𝒑 𝑽𝒑
𝑇 ,

Where 𝑼𝒑 is the m x p matrix consisting of the first p columns of 𝑼 , 𝜮𝒑 is the p x p upper

diagonal portion of 𝜮 , and 𝑽𝒑 is the n x p matrix consisting of the first p columns of 𝑽 . The p

columns of 𝑼𝒑 and the p columns of 𝑽𝒑 are orthonormal:

𝑼𝒑
𝑇𝑼𝒑 = 𝑰𝒑 , 𝑽𝒑

𝑇𝑽𝒑 = 𝑰𝒑 ,

where 𝑰𝒑 denote the identity matrix of order p.

The Ponderosa Computing Linear Algebra .NET class library provides the following methods

computing the thin singular value decomposition or parts thereof of a matrix:

Singular value decomposition SingularValueDecomposition()

Singular values SingularValues()

SingularValuesEB()

Left or right singular vectors SingularValuesLeftVectors()

SingularValuesRightVectors()

4.6.1 Singular Value Decomposition

The class method

 LinearAlgebra.SingularValueDecomposition(A)

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 32

returns the thin singular value decomposition of an m x n matrix 𝑨. This function returns the p =

min(m,n) singular values, their associated left singular vectors, and their associated right singular

vectors of 𝑨 in the p columns of a (m+n+1) x p matrix 𝑺:

𝑺 =

[

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

𝑣11 𝑣21 ⋯ 𝑣𝑝1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑝𝑛]

The first row of 𝑺 contains the p singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order. The

columns of the next m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}. The columns

of the last n rows contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}.

This method computes the singular value decomposition of 𝑨 using routine dgesvd_() from

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular

values and singular vectors of an (upper or lower) bidiagonal matrix using the implicit zero-shift

QR algorithm. If this algorithm fails to find all the singular values of 𝑨 then this method throws

an eInternalError LinearAlgebraException.

4.6.2 Singular Values

The class method

 LinearAlgebra.SingularValues(A)

returns the p = min(m,n) singular values of a m x n matrix 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order

as an p-element column vector 𝒔:

𝒔 = [

𝜎1

𝜎2

⋮
𝜎p

] .

This method computes the singular values of 𝑨 using routine dgesvd_() from CLAPACK v

3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper

or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to

find all the singular values of 𝑨 then this method throws an eInternalError

LinearAlgebraException.

4.6.3 Singular Values With Error Bound

The class method

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 33

 LinearAlgebra.SingularValuesEB(A)

returns the p = min(m,n) singular values of a m x n matrix 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order

followed by a forward error bound estimate e as an (p+1)-element column vector 𝒔𝑨:

𝒔𝑨 =

[

𝜎1

𝜎2

⋮
𝜎p

𝑒]

 .

The forward error bound estimate e bounds the absolute error in the computed singular values. If

𝜎𝑖 is the i-th computed singular value and 𝜎𝑖𝑡 is the i-th true singular value, then the absolute

error in 𝜎𝑖 is bounded by:

|𝜎𝑖 − 𝜎𝑖𝑡| ≤ 𝑒

This estimate is almost always a slight overestimate of the true error.

This method computes the singular values of 𝑨 using routine dgesvd_() from CLAPACK v

3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular values of an (upper

or lower) bidiagonal matrix using the implicit zero-shift QR algorithm. If this algorithm fails to

find all the singular values of 𝑨 then this method throws an eInternalError

LinearAlgebraException.

The singular values forward error bound e is:

𝑒 = max(𝑠𝑓𝑚𝑖𝑛 ,max(𝑚, 𝑛) ∗ 𝑒𝑝𝑠 ∗ σ1) .

This error bound is described here: http://www.netlib.org/lapack/lug/node97.html, but this

methods uses p(m,n) = max(m,n) in place of p(m,n) = 1 as the "modestly growing function of n"

and uses machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is

similar to that found in the example program: http://www.nag.com/lapack-ex/node128.html .

4.6.4 Left Singular Vectors

The class method

 LinearAlgebra.SingularValuesLeftVectors(A)

returns the p = min(m,n) singular values and first p left singular vectors of a m x n matrix 𝑨 in

the p columns of a (m+1) x p matrix 𝑺:

http://www.netlib.org/lapack/lug/node97.html
http://www.nag.com/lapack-ex/node128.html

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 34

𝑺 = [

𝜎1 𝜎2 ⋯ 𝜎𝑝

𝑢11 𝑢21 ⋯ 𝑢𝑝1

⋮ ⋮ ⋱ ⋮
𝑢1𝑚 𝑢2𝑚 ⋯ 𝑢𝑝𝑚

]

The first row of 𝑺 contains the p singular values of 𝑨, {𝜎1, 𝜎2, … 𝜎p}, in descending order. The

columns of the remaining m rows contain the first p left singular vectors, {𝒖1, 𝒖2, …𝒖𝑝}.

This method computes the singular value decomposition of 𝑨 using routine dgesvd_() from

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular

values and singular vectors of an (upper or lower) bidiagonal matrix using the implicit zero-shift

QR algorithm. If this algorithm fails to find all the singular values of 𝑨 then this method throws

an eInternalError LinearAlgebraException.

4.6.5 Right Singular Vectors

The class method

 LinearAlgebra.SingularValuesRightVectors(A)

returns the p = min(m,n) singular values and first p right singular vectors of a m x n matrix 𝑨 in

the p rows of a p x (n+1) matrix 𝑺:

𝑺 = [

𝜎1 𝑣11 𝑣12 ⋯ 𝑣1𝑛

𝜎2 𝑣21 𝑣22 ⋯ 𝑣2𝑛

⋮ ⋮ ⋮ ⋱ ⋮
𝜎𝑝 𝑣𝑝1 𝑣𝑝2 ⋯ 𝑣𝑝𝑛

]

The first column of 𝑺 contains the p singular values of 𝑨 in descending order. The rows of the

remaining n columns of 𝑺 contain the first p right singular vectors, {𝒗1, 𝒗2, … 𝒗𝑝}.

This method computes the singular value decomposition of 𝑨 using routine dgesvd_() from

CLAPACK v 3.2.1. Routine dgesvd_() uses routine dbdsqr_() to compute the singular

values and singular vectors of an (upper or lower) bidiagonal matrix using the implicit zero-shift

QR algorithm. If this algorithm fails to find all the singular values of 𝑨 then this method throws

an eInternalError LinearAlgebraException.

4.7 Eigenvalues and Eigenvectors

A right eigenvector of an n x n symmetric (real) matrix 𝑨 is a nonzero n-vector 𝒗 such that the

matrix product:

𝑨𝒗 = 𝜆𝒗 .

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 35

Here λ is a real number (scalar) called the eigenvalue of 𝑨 corresponding to the right eigenvector

𝒗. The set of all eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}, each paired with its corresponding eigenvalue,

{𝜆1, 𝜆2, … 𝜆𝑛}, is called the eigensystem of the matrix 𝑨. It can be expressed as:

𝑨 𝑽 = 𝑽 𝜦.

Here 𝜦 is a n x n diagonal matrix with diagonal entries {𝜆1, 𝜆2, … 𝜆𝑛} and 𝑽 is a n x n matrix with

columns {𝒗1, 𝒗2, … 𝒗𝑛}.

The Ponderosa Computing Linear Algebra .NET class library provides the following methods

computing the eigenvalues and right eigenvectors of a symmetric (real) matrix:

Eigenvalues Eigenvalues()

EigenvaluesEB()

Eigenvalues and right eigenvectors EigenvaluesRightEigenvectors()

4.7.1 Eigenvalues

The class method

 LinearAlgebra.Eigenvalues(A)

returns the eigenvalues of an n x n symmetric (real) matrix 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order,

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, as an n-element column vector 𝛌:

𝛌 = [

𝜆1

𝜆2

⋮
𝜆n

] .

If 𝑨 is not symmetric then this method throws an eBadParamError LinearAlgebraException.

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1.

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method

throws an eInternalError LinearAlgebraException.

4.7.2 Eigenvalues with Error Bounds

The class method

 LinearAlgebra.EigenvaluesEB(A)

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 36

returns the eigenvalues of an n x n symmetric (real) matrix 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order,

𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆n, followed by a forward error bound estimate e as an (n+1)-element column

vector 𝛌𝑨:

𝛌𝑨 =

[

𝜆1

𝜆2

⋮
𝜆n

𝑒]

 .

If 𝑨 is not symmetric then this method throws an eBadParamError LinearAlgebraException.

The forward error bound estimate e bounds the absolute error in the computed eigenvalues. If 𝜆𝑖

is the i-th computed eigenvalue and 𝜆𝑖𝑡 is the i-th true eigenvalue, then the absolute error in 𝜆𝑖 is

bounded by:

|𝜆𝑖 − 𝜆𝑖𝑡| ≤ 𝑒

This estimate is almost always a slight overestimate of the true error.

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1.

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method

throws an eInternalError LinearAlgebraException.

The eigenvalues forward error bound e is:

𝑒 = max (𝑠𝑓𝑚𝑖𝑛 , 𝑛 ∗ 𝑒𝑝𝑠 ∗ max𝑖(|𝜆𝑖|)) .

This error bound is described here: http://www.netlib.org/lapack/lug/node90.html, but this

method uses p(n) = n in place of p(n) = 1 as the "modestly growing function of n" and uses

machine epsilon dlamch_("P") in place of dlamch_("E"). The computation of e is similar to that

found in the example program: http://www.nag.com/lapack-ex/node71.html.

4.7.3 Eigenvalues and Right Eigenvectors

The class method

 LinearAlgebra.EigenvaluesRightEigenvectors(A)

returns the eigenvalues and right eigenvectors of an n x n symmetric (real) matrix 𝑨 in the n

columns of the (n+1) x n matrix 𝑽𝑨.

http://www.netlib.org/lapack/lug/node90.html
http://www.nag.com/lapack-ex/node71.html

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 37

𝑽𝑨 = [

𝜆1 𝜆2 ⋯ 𝜆𝑛

𝑣11 𝑣21 ⋯ 𝑣𝑛1

⋮ ⋮ ⋱ ⋮
𝑣1𝑛 𝑣2𝑛 ⋯ 𝑣𝑛𝑛

]

The first row of 𝑽𝑨 contains the n eigenvalues of 𝑨, {𝜆1, 𝜆2, … 𝜆𝑛}, in ascending order, 𝜆1 ≤ 𝜆2 ≤
⋯ ≤ 𝜆n. The columns of the remaining n rows of 𝑽𝑨 contain the corresponding n right

eigenvectors of 𝑨, {𝒗1, 𝒗2, … 𝒗𝑛}.

If 𝑨 is not symmetric then this method throws an eBadParamError LinearAlgebraException.

This method computes the eigenvalues of 𝑨 using routine dsyev_() from CLAPACK v 3.2.1.

Routine dsyev_() uses routine dsterf_() which computes all eigenvalues of a symmetric

tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. If this

algorithm fails to find all of the eigenvalues of 𝑨 in at most 30*n iterations then this method

throws an eInternalError LinearAlgebraException.

4.8 Cholesky Factorization

The upper triangular Cholesky factorization (or decomposition) of an n x n symmetric

positive definite matrix A is the unique factorization of 𝑨 into

𝑨 = 𝑼𝑇𝑼

where 𝑼 is an n x n upper triangular matrix with positive entries on the diagonal.

The lower triangular Cholesky factorization (or decomposition) of an n x n symmetric

positive definite matrix A is the unique factorization of 𝑨 into

𝑨 = 𝑳 𝑳𝑇

where 𝑳 is an n x n lower triangular matrix with positive entries on the diagonal.

The Ponderosa Computing Linear Algebra .NET class library provides the following methods

computing the Cholesky factorizations of a symmetric positive definite matrix:

Upper Cholesky factorization UpperCholeskyFactorization()

Lower Cholesky factorization LowerCholeskyFactorization()

4.8.1 Upper and Lower Cholesky Factorizations

The class method

 LinearAlgebra.UpperCholeskyFactorization(A)

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 38

returns the upper triangular Cholesky factorization of an n x n symmetric positive definite matrix

𝑨 as an n x n upper triangular matrix 𝑼 with positive entries on the diagonal.

The class method

 LinearAlgebra.LowerCholeskyFactorization(A)

returns the lower triangular Cholesky factorization of an n x n symmetric positive definite matrix

𝑨 as an n x n lower triangular matrix 𝑳 with positive entries on the diagonal.

These methods compute a Cholesky factorization of an n x n symmetric positive definite matrix

𝑨 using routine dpotrf_() from CLAPACK v 3.2.1. If this algorithm determines the the matrix

𝑨 is not positive definite then these methods throw an eBadParamError

LinearAlgebraException.

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 39

5 References

[1] Anderson, E. et al., LAPACK Users’ Guide, Third Edition (Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1999) ISBN 0-89871-447-8.

[2] LAPACK on the Netlib Repository at UTK and ORNL. http://www.netlib.org/lapack/

[3] CLAPACK (f2c'ed version of LAPACK) version 3.2.1 on the Netlib Repository at UTK and

ORNL. http://www.netlib.org/clapack/. See clapack-3.2.1-CMAKE.tgz.

[4] CLAPACK for Windows at the University of Tennessee Innovative Computing Laboratory.

http://icl.cs.utk.edu/lapack-for-windows/clapack/

[5] How to: Wrap Native Class for Use by C#. https://msdn.microsoft.com/en-

us/library/ms235281.aspx

[6] Wikipedia: IEEE floating point. This discussion includes references to the standard

publications.

[7] LAPACK/ScaLAPACK Development Forum. http://icl.cs.utk.edu/lapack-forum/

http://www.netlib.org/lapack/
http://www.netlib.org/clapack/
http://icl.cs.utk.edu/lapack-for-windows/clapack/
https://msdn.microsoft.com/en-us/library/ms235281.aspx
https://msdn.microsoft.com/en-us/library/ms235281.aspx
http://en.wikipedia.org/wiki/IEEE_floating_point
http://icl.cs.utk.edu/lapack-forum/

Ponderosa Computing Linear Algebra .NET Class Library

 Copyright © 2019 Paul J. McClellan. All rights reserved. 40

6 License Notice

The Ponderosa Computing Linear Algebra .NET class library was built using the CLAPACK

implementation of LAPACK, a freely-available software package from netlib at

http://www.netlib.org/lapack. The license used for the LAPACK software is the modified BSD

license:

Copyright (c) 1992-2013 The University of Tennessee and The University

 of Tennessee Research Foundation. All rights

 reserved.

Copyright (c) 2000-2013 The University of California Berkeley. All

 rights reserved.

Copyright (c) 2006-2013 The University of Colorado Denver. All rights

 reserved.

$COPYRIGHT$

Additional copyrights may follow

$HEADER$

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are

met:

- Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright

 notice, this list of conditions and the following disclaimer listed

 in this license in the documentation and/or other materials

 provided with the distribution.

- Neither the name of the copyright holders nor the names of its

 contributors may be used to endorse or promote products derived from

 this software without specific prior written permission.

The copyright holders provide no reassurances that the source code

provided does not infringe any patent, copyright, or any other

intellectual property rights of third parties. The copyright holders

disclaim any liability to any recipient for claims brought against

recipient by any third party for infringement of that parties

intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://www.netlib.org/lapack/#_licensing
http://www.netlib.org/lapack
http://www.netlib.org/lapack/LICENSE.txt
http://www.netlib.org/lapack/LICENSE.txt

